Глаз, мозг, зрение - Дэвид Хьюбел
Шрифт:
Интервал:
Закладка:
Как только мы нашли бинокулярную клетку, можно тщательно сравнить ее рецептивные поля в обеих сетчатках. Сначала закрываем правый глаз животного и картируем рецептивное поле клетки в левом глазу, отмечая его точное положение на экране или на сетчатке, а также его сложность, ориентацию и расположение возбуждающих и тормозных зон; выясняем также, простая это клетка или сложная, исследуем ее способность реагировать на конец линии и дирекциональную чувствительность; после этого закрываем левый глаз животного, открываем правый и повторяем всю процедуру измерений сначала. Оказалось, что у большинства бинокулярных клеток все свойства, выявляемые в опытах с левым глазом, обнаруживаются и при стимуляции правого глаза — то же положение на сетчатке, та же дирекциональная чувствительность и т.д. Это позволяет заключить, что все связи, идущие к данной клетке от левого глаза, совпадают по структуре со связями, идущими от правого глаза.
Говоря о таком дублировании связей, нужно сделать одно уточнение. Если, определив для клетки оптимальный стимул, его положение, ориентацию, направление движения и т.д., мы сравним ее ответы при стимуляции одного глаза и при стимуляции другого, интенсивность реакции не всегда окажется одинаковой. Некоторые клетки действительно одинаково хорошо активируются от обоих глаз, однако другие явно дают более сильный разряд при стимуляции определенного глаза. В целом, за исключением той части корковых клеток, которые обслуживают периферию поля зрения, мы не находим никакого особого преимущества того или другого глаза — в каждом полушарии число клеток, лучше активируемых с противоположной стороны (от контралатерального глаза) и с той же стороны (от ипсилатерального глаза), примерно одинаково. При этом встречаются все степени относительного доминирования глаза, начиная от клеток, возбуждаемых исключительно с левого глаза, и кончая клетками, отвечающими только на стимуляцию правого глаза.
Теперь можно оценить численность различных популяций клеток. Разобьем все изученные клетки, скажем 1000 штук, произвольно на семь классов по относительной эффективности воздействия на них того или другого глаза. Затем подсчитаем число клеток в каждом классе. На рис. 58 представлены соответствующие гистограммы для кошки и макака. Здесь сразу видны сходства и различия в распределении клеток у этих животных. Видно, что у обоих видов бинокулярные клетки встречаются достаточно часто, причем среди клеток с односторонним доминированием хорошо представлены оба глаза (у макака примерно поровну), что у кошек бинокулярных клеток очень много, что у макаков численность монокулярных и бинокулярных клеток примерно одинакова, причем у бинокулярных клеток зачастую сильно выражено доминирование одного глаза (группы 2 и 5), и что реже всего встречаются клетки, одинаково хорошо активируемые с любого глаза.
Рис. 58. Изучая распределение нейронов по глазодоминантности, мы исследовали сотни клеток и относили каждую из них к одной из семи произвольно выделенных групп. Клетки группы 1 определяются как клетки, на которые влияет только контралатеральный глаз, т.е. глаз, находящийся на противоположной стороне тела; клетки группы 2 реагируют на стимуляцию обоих глаз, однако явно предпочитают сигналы от контралатерального глаза; и т.д.
Рис. 59. Регистрирующий электрод оказался достаточно близко к трем клеткам, чтобы отводить импульсы от всех трех. Ответы разных клеток можно различить по амплитуде и форме импульсов. На рисунке показаны реакции на стимулы, предъявленные одному глазу и обоим глазам. Клетки 1 и 2 должны быть отнесены к группе 4, так как они почти одинаково отвечают на стимуляцию того и другого глаза. Клетка 3 отвечает только на одновременную стимуляцию обоих глаз; можно сказать лишь то, что она не принадлежит ни к группе 1, ни к группе 7.
Теперь мы можем продвинуться дальше и задать следующий вопрос: отвечают ли бинокулярные клетки при стимуляции обоих глаз лучше, чем при стимуляции одного глаза? Оказывается, многие клетки именно таковы — от одного глаза они активируются слабо или не возбуждаются совсем, а от двух глаз дают сильный импульсный разряд, особенно в том случае, когда оба глаза стимулируются одновременно и совершенно одинаково. На рис. 59 показаны записи ответов трех клеток (1, 2 и 3), демонстрирующих выраженную синергию. Одна из этих клеток вообще не отвечает на стимуляцию только одного глаза, так что мы вообще не смогли бы ее обнаружить, если бы не стимулировали оба глаза одновременно. Эффект синергии у многих клеток выражен слабо или не отмечается вовсе — такие клетки отвечают на стимуляцию обоих глаз примерно так же, как и на стимуляцию каждого глаза по отдельности.
Подобные связи одиночных клеток с двумя глазами еще раз указывают на высокую степень специфичности соединений в мозгу. Мало того, что входные системы связей данной клетки позволяют ей отвечать только на линию определенной ориентации и лишь на одно направление движения, — оказывается к тому же, что эти системы представлены двумя копиями, по одной от каждого глаза. Но и этого еще мало: как мы узнаем из главы 9, большинство связей, по-видимому, должно быть сформировано и готово к работе уже к моменту рождения животного. Все это поистине удивительно.
5. Архитектура зрительной коры
По сравнению с наружными коленчатыми телами (НКТ) и сетчаткой первичная зрительная кора, или стриарная кора, — структура гораздо более сложная. Как мы уже видели, резкое увеличение структурной сложности отделов мозга сопровождается таким же усложнением физиологической организации. В стриарной коре мы находим большее разнообразие функциональных типов клеток. Нейроны стриарной коры отвечают на более сложные стимулы, т.е. стимулы с большим числом параметров, причем эти параметры должны быть вполне определенными. Если при исследовании клеток сетчатки и НКТ нам достаточно было изменять только местоположение и размеры стимула в виде простого пятна, то теперь мы внезапно столкнулись с необходимостью учитывать такие параметры, как ориентация линии, направление движения, длина линии и ее кривизна, а также выбор глаза, на который подается стимул. Какая связь существует между этими параметрами и структурной организацией коры (если она вообще есть)? Для того чтобы подойти к рассмотрению этого вопроса, сначала необходимо сообщить кое-что о строении стриарной коры.
Анатомия зрительной корыКора представляет собой слой нервной ткани толщиной около 2 мм, который почти полностью покрывает большие полушария головного мозга. Площадь поверхности коры у человека составляет больше квадратного фута (около 900 см2). Общая площадь коры у макаков примерно в 10 раз меньше, чем у человека. Уже более столетия известно, что кора полушарий подразделяется на множество различных корковых полей. Среди всех этих полей первой удалось выделить зону первичной зрительной коры, которая на поперечных срезах выглядит слоистой или полосатой (отсюда и ее давнее название — стриарная кора: лат. stria — полоса). Было время, когда все устремления нейроморфологов сводились к тому, чтобы выявить как можно больше корковых полей на основании подчас весьма тонких гистологических различий. В одной из принятых систем такой классификации стриарной коре был присвоен номер 17. По одной из новейших оценок (Д. ван Эссен, Калифорнийский технологический институт) у макаков первичная зрительная кора занимает около 1200 мм2 (немногим меньше одной трети кредитной карточки); это примерно 15% всей площади коры, т.е. довольно существенная ее часть.
Рис. 60. На этом срезе видны колонки глазодоминантности в коре левого полушария мозга макака. Срез сделан перпендикулярно поверхности коры в направлении слева направо. Прослеживая поверхность коры в направлении слева направо (см. верхнюю часть фотографии), мы увидим, что она образует изгиб и глубокую складку, проходящую справа налево. Радиоактивная аминокислота, введенная путем инъекции в левый глаз животного, транспортировалась через НКТ в слой 4C коры и сосредоточилась во множестве отдельных участков толщиной каждый в полмиллиметра, которые выделяются как яркие полоски на общем темном фоне. (Сплошной светлый листок в середине — это белое вещество, состоящее из волокон от коленчатого тела.)
Рис. 61. Здесь видна значительная часть коры правого полушария головного мозга, открытая под местной анестезией для нейрохирургической операции по поводу эпилепсии. Больной находился в полном сознании. Операцию проводил хирург д-р У. Фейндел в Монреальском неврологическом институте. Участок скальпа был отвернут и соответствующий кусок черепа удален (временно, до окончания операции). На снимке видны борозды, извилины, крупные вены пурпурного оттенка и более мелкие (красного цвета) артерии. Общий розоватый оттенок открытой части мозга объясняется наличием мелкой сети разветвлений этих сосудов. Нижняя треть обнаженного участка — височная доля. Выше горизонтально идущих крупных вен расположены части теменной доли (слева) и лобной доли (справа). У самого левого края можно видеть полоску затылочной доли. Операция проводилась с целью лечения определенной формы эпилепсии и заключалась в удалении пораженной части мозга. Такая операция допускается лишь в том случае, если не может привести к нарушению произвольных движений или речи. Для того чтобы избежать этого, нейрохирург путем раздражения электрическим током идентифицирует области, связанные с речью, движениями и чувствительностью, выясняя, какие при этом возникают двигательные эффекты, ощущения в различных частях тела и нарушения речи. Ясно, что такие испытания были бы невозможны, если бы больной не был в сознании. Места, где производилось раздражение, отмечены кусочками стерильной бумаги с цифрами. При раздражении отмечались, например, такие результаты: 1) ощущение покалывания в большом пальце левой руки; 2) покалывание в безымянном пальце левой руки; 3) покалывание в безымянном и среднем пальцах левой руки; 4) сгибание пальцев левой руки и запястья. При раздражении участков с номерами 8 и 13 возникали более сложные явления, сходные с образами памяти, что бывает у некоторых больных эпилепсией при раздражении височной доли.