Десять великих идей науки. Как устроен наш мир. - Питер Эткинз
Шрифт:
Интервал:
Закладка:
Когда мы думаем о частицах, мы думаем о составляющих их частях и о силах, удерживающих эти части вместе, об их клее. Ученые обнаружили одну силу, ответственную за все такие взаимодействия. Хотя это преувеличение. Выражаясь более точно, они верят, что существует только одна сила, действующая во Вселенной, очень экономная, но проявляющая себя пятью различными способами. Три проявления — электрическая, магнитная и гравитационная силы — знакомы нам по повседневной жизни. Два других проявления — слабое и сильное взаимодействия — совершенно не знакомы.
Одним из величайших достижений науки девятнадцатого века была демонстрация того, что электрические и магнитные силы лучше всего представлять себе как две стороны одной электромагнитной силы, которую провел шотландский ученый Джеймс Клерк Максвелл (1831-79)[23] в своей Динамической теории электрического поля (1864). Максвелл основывал свою теоретическую работу на результатах, которые экспериментально получил блистательный, но не умевший выражаться математически ясно Майкл Фарадей (1791-1867), ранее введший в физику понятие поля как области действия силы. Вообще говоря, электрическая сила действует между всеми заряженными частицами, а магнитная сила действует между заряженными частицами в движении, такими, как поток электронов в соседних витках проволоки. Одним из важнейших плодов этой унификации двух ранее отдельных сил было то, что Максвелл пролил свет на загадочную до тех пор природу света и продемонстрировал, что свет является электромагнитным излучением, электромагнитным полем в полете. Такое понимание было подтверждено в 1888 г., когда Генрих Герц (1857-94) создал и зарегистрировал радиоволны: результатом этого явилась история современной связи. Вторым интеллектуальным плодом была теория относительности, которая появилась, когда уравнения Максвелла предстали перед проницательным взглядом Эйнштейна (глава 9).
Третий плод упал с того же дерева в начале двадцатого века, когда в 1905 г. появилось развитое Эйнштейном понятие фотона (см. главу 7), пакета электромагнитной энергии, название которому дал в 1916 г. американский химик Г.Н. Льюис. Фотон был первой из открытых частиц-переносчиков взаимодействия, частиц, которые переносят силу между излучающей и реагирующей частицами, такими, как два электрона или электрон и ядро. Фотон является частицей-переносчиком взаимодействия для электромагнитного поля, передавая силу от частицы к частице и путешествуя со скоростью света.
На этой стадии нам необходимо отметить два свойства фотонов, которые пригодятся нам позднее. Фотон не имеет массы и, как и электрон, обладает спином, который не может быть уничтожен. По техническим причинам, связанным с квантово-механическим описанием спина, электрону приписывается спин, равный одной второй от единицы момента импульса. По тем же причинам фотону приписывается единичный спин. Частицы с полуцелым спином (включающие в себя, кроме электронов, протоны и нейтроны) называются фермионами в честь итальянского физика Энрико Ферми (1901-54), который открыл способ описания их ансамбля, а также возглавлял во время войны проект по созданию первого ядерного реактора в рамках проекта Манхэттен. Частицы с целым спином называются бозонами в честь индийского физика Сатьендранатха Бозе (1894-1974), который изучал статистические свойства систем, состоящих из большого числа таких частиц, как, например, контейнеры, наполненные светом, или солнечные лучи. Оказывается, что все фундаментальные частицы вещества являются фермионами, в то время как все частицы-переносчики взаимодействия являются бозонами. Поэтому описание материи, как ансамбля фермионов, удерживаемых вместе бозонами, является очень глубоким.
Любой задумчиво созерцающий звезды влюбленный мог бы сказать вам, что фотоны не имеют массы, ибо то, что мы можем видеть звезды, является прямым следствием этой безмассовости. Цепочка аргументов, доказывающих это, примерно следующая. Во-первых, мы видели в конце главы 3, что частицы, живущие очень короткое время, обладают большой неопределенностью энергии. Далее, для того чтобы частицы-переносчики взаимодействия с данной массой могли появиться, они должны позаимствовать энергию, пропорциональную их массе (согласно E = mc2): тяжелые частицы соответствуют присутствию большой энергии. Частицы могут появиться, минуя полицию, следящую за выполнением закона сохранения энергии, только если они живут столь короткое время, что кража при любой ревизии энергии будет сокрыта под неопределенностью. Следовательно, тяжелые частицы могут появиться, не будучи задержаны полицией сохранения энергии, только если они живут очень короткое время (вы имеете возможность смыться с прихваченным миллиардом — долларов в течение пикосекунды). И, наконец, третье звено в цепочке аргументов. За время своего существования частица-переносчик взаимодействия летит с высокой скоростью, и расстояние, которое она может пролететь, пропорционально времени, отведенному ей для жизни. Тяжелая частица-переносчик взаимодействия со своим коротким временем жизни, не может путешествовать далеко. С другой стороны, для того чтобы частица-переносчик взаимодействия улетела бесконечно далеко, она должна жить вечно, что может произойти без ареста со стороны полиции сохранения энергии, только если в начале полета ничего не было похищено. То есть она не должна иметь массы. Следовательно, для того чтобы электромагнетизм имел бесконечный радиус действия, фотон должен быть безмассовым. Если бы фотон имел массу, электромагнитное излучение было бы неспособно преодолевать большие расстояния, и мы не могли бы видеть звезд; наш влюбленный не созерцал бы звезды. Если бы фотон в самом деле был тяжелым, атомы распались бы, потому что притяжение ядер не смогло бы распространиться достаточно далеко для того, чтобы захватить электроны.
Третьей знакомой силой является гравитация. Гравитация действует между частицами, но она гораздо слабее, чем электромагнитное взаимодействие. Например, гравитационное взаимодействие между двумя электронами в 1042 раза слабее, чем их электромагнитное взаимодействие. Там, где гравитационная сила могла бы сдвинуть блоху весом один миллиграмм, электромагнитная сила сдвинула бы миллион Солнц. То, что мы не затоплены электромагнетизмом и можем ощущать гравитацию, является следствием того факта, что Вселенная состоит из равного числа положительно и отрицательно заряженных частиц, так что притяжение и отталкивание аннулируются в космическом масштабе. А вот гравитация имеет только один знак: существует лишь гравитационное притяжение, нет никакого отталкивания, поэтому нет и аннулирования. Все частицы Вселенной действуют хотя и слабо, но сообща, и мы испытываем силу их совместного притяжения. Локально первостепенными являются электромагнитные силы: ваша форма определяется в большой мере электромагнитными силами, и тот факт, что вы не растекаетесь по земле в виде бесформенной лужи, обязан своим существованием подавляющему преобладанию электромагнетизма над гравитацией.
Существует идея, что у гравитации тоже есть частица-переносчик взаимодействия. По крайней мере, она имеет название — гравитон, — но пока не обнаружена, поскольку очень слабо взаимодействует с веществом. Гравитон — это безмассовый бозон, как и фотон, но вращается в два раза быстрее. То, что гравитация распространяется на почти бесконечное расстояние, является признаком того, что гравитон не имеет массы. Любой опытный моряк мог бы сказать вам, что гравитон имеет спин 2, поскольку существует цепочка тонких аргументов, связывающая эту двойную скорость вращения с тем фактом, что в наших океанах приливы случаются дважды в день.
Теперь мы подходим к двум незнакомым силам, сильному взаимодействию и слабому взаимодействию. Хотя они и незнакомы, но думающая личность могла бы сделать вывод о существовании сильного взаимодействия. Аргументы таковы. Ядра состоят из протонов и нейтронов, сложенных в месте в очень малом объеме. Электромагнитная сила отталкивает протоны друг от друга (поскольку они имеют одинаковый заряд, а одинаковые заряды отталкиваются), поэтому у ядра имеется сильная тенденция к распаду. (Некоторые из ядер радиоактивных элементов, таких как радий, именно так и поступают, и именно по этой причине.) Что удерживает протоны в ядре? Более того, почему незаряженные нейтроны просто не выпадают?
Что их удерживает? На нейтроны не действует никакая электрическая сила, поэтому они должны притягиваться чем-то еще. Коротко говоря, раз большинство ядер не распадается, и раз большинство из них удерживает свои нейтроны, должна существовать сила, превосходящая электромагнитную силу, которая действует между протонами, между нейтронами и между протонами и нейтронами. Кроме того, поскольку все вещество во Вселенной не свернулось в одно огромное ядро, это притягивающее сильное взаимодействие должно иметь очень короткий радиус действия, не превосходящий примерно диаметра ядра.