Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Математика » Десять великих идей науки. Как устроен наш мир. - Питер Эткинз

Десять великих идей науки. Как устроен наш мир. - Питер Эткинз

Читать онлайн Десять великих идей науки. Как устроен наш мир. - Питер Эткинз

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 45 46 47 48 49 50 51 52 53 ... 107
Перейти на страницу:

Некоторые симметрии скрыты от прямого наблюдения, но все равно имеют соответствующие им следствия. Теперь все, что я попрошу вас делать, это отмечать совпадения и задавать себе вопрос, не являются ли они следствием симметрии. Знаком того, что под поверхностью явлений скрывается симметрия, является точное равенство энергий различных конфигураций частиц: если две конфигурации связаны преобразованием симметрии, то энергия этих двух конфигураций одинакова. Мы столкнулись с особенно подходящим примером в главе 5, когда увидели, что в атоме водорода энергия электрона, который находится на s-орбитали, является точно такой же, как энергия электрона, находящегося на p-орбитали той же оболочки. s-орбиталь является сферической, а p-орбиталь имеет две доли, поэтому, хотя легко увидеть, что p-орбиталь можно повернуть и получить другую p-орбиталь, совсем не очевидно, что p-орбиталь можно повернуть так, чтобы получить s-орбиталь. Я уже упоминал, что потенциальная энергия — энергия, связанная с положением электрона в электрическом поле ядра, так называемая кулоновская потенциальная энергия — является в некотором специальном смысле красивой, и теперь я могу объяснить, что я имею в виду.

Кулоновская потенциальная энергия сферически симметрична. То есть, куда бы мы ни поместили электрон на заданном расстоянии от ядра — на северном или южном полюсе, на экваторе или где-нибудь между ними — его потенциальная энергия будет в точности той же самой. Потенциальная энергия меняется с расстоянием от ядра, но при заданном расстоянии она независима от угла. Эта сферическая симметрия говорит нам, что преобразования симметрии атома включают вращения на любой угол относительно  любой оси, в точности как симметрические операции для сферы. Раз это так, три p-орбитали могут быть переведены одна в другую преобразованием симметрии сферы, поэтому их энергии одинаковы. Однако все еще кажется, что мы не можем перевести поворотом s-орбиталь в p-орбиталь.

Вот необычайный факт: кулоновская потенциальная энергия великолепна, в том смысле, что она имеет вращательную симметрию не только в трех измерениях (как мы уже видели), но также и в четырех. Эта более высокая симметрия означает, что в четырех измерениях может существовать вращение, которое превращает трехмерную s-орбиталь в трехмерную p-орбиталь. Если это так и мы можем вращением превращать различные орбитали друг в друга, то они будут иметь одинаковую энергию.

Я понимаю, что, ожидая от вас мышления в четырех измерениях, я перешел бы границы дозволенного (по крайней мере, пока мы не доберемся до главы 9) и сейчас не стану требовать от вас этого. В качестве компенсации я использую простую аналогию. Представьте себе сферу, покоящуюся на плоскости. Плоскость представляет наш трехмерный мир, а сфера представляет четырехмерный мир, только проекция которого нам видна. Предположим, что мы окрасили северную половину сферы в черный цвет, а южную половину в белый. Мы можем провести линию от северного полюса и спроецировать с ее помощью поверхность сферы на плоскость. Эта проекция окрашенной сферы имеет вид круга (рис. 6.7). Затем повернем сферу на 90° в положение, показанное во второй части иллюстрации. Новая проекция делит плоскость на две половины, черную и белую. Другая ориентация сферы показана в третьей части иллюстрации и имеет такую же проекцию, но повернутую на 90°. Мы, плоскомирцы, находим вполне правдоподобным, что вторая и третья проекции связаны вращением, поэтому мы не удивляемся, что эти «p-орбитали» имеют одинаковую энергию. Однако, нас поистине озадачит тот факт, что их можно преобразовать в первую, круглую форму, поэтому мы не можем понять, что «s-орбиталь» имеет такую же энергию, как и две p-орбитали. У наблюдателя из трех измерений нет таких хлопот: этот наблюдатель видит, что все наши картинки из Плоскомирья, как проекции сферы, связаны простым вращением. Точно такие же соображения приложимы к орбиталям атома водорода, и мы видим, что равенство энергий у не связанных с виду орбиталей является следствием их симметрии, спрятанной в четвертом измерении.

Рис. 6.7. Пояснение к тому, как можно, повысив размерность, вращением перевести s- и p-орбитали друг в друга. Орбитали представлены картинками в двумерном пространстве. Если мы допустим, что эти картинки являются проекциями сферы в трехмерном пространстве на двумерное пространство, то мы можем увидеть, что вращение сферы меняет местами двумерные картинки. Кулоновский потенциал имеет четырехмерную симметрию, что допускает возможность вращений подобного типа.

Имеется и другой очень продуктивный способ рассмотрения, который вскоре даст свои плоды. Энергия электрона на s-орбитали не в точности такая же, как у электрона на p-орбитали. Ученые знают почему: между орбитальным движением электрона и его спином имеется очень слабое магнитное взаимодействие, которое немного сдвигает значение энергии. Это пример нарушения симметрии, процесса, при котором, несмотря на то, что в основе лежит преобразование симметрии, другое слабое примесное взаимодействие приводит к тому, что энергии разных состояний отличаются друг от друга. Можно другим способом взглянуть на это нарушение симметрии, вспомнив, что, согласно частной теории относительности Эйнштейна, энергия и масса эквивалентны (E = mc2, глава 9), поэтому мы могли бы выразить разницу энергий электронов на s-орбиталях и p-орбиталях как разницу их масс. Иными словами, разница масс возникает из взаимодействия, нарушающего симметрию. Разность энергий в данном случае очень мала, поэтому разница масс, порожденная нарушением симметрии, мала в высшей степени, всего 1×10−37 г; но, говоря вкратце, хотя эта разница вполне пренебрежима, она расцветет чем-то действительно важным.

Захватывающая красота центрально-симметричной кулоновской потенциальной энергии, которую следует считать самым великолепным видом потенциальной энергии, из тех, что можно вообразить, теряется, как только в атоме появляется второй электрон. Как мы видели в главе 5, энергетические уровни атома водорода служат хорошим первым приближением для энергетических уровней всех других атомов. Тогда, при условии, что мы допускаем изменения энергии, обусловленные электрическим отталкиванием между электронами (приводящим, например, к тому, что электроны на s-орбиталях имеют несколько меньшую энергию, чем электроны на p-орбиталях), структура периодической таблицы возникает автоматически. Однако существует другой, более изощренный, основанный на симметрии способ понимания смысла периодической таблицы.

В первом приближении мы можем выразить структуры атомов всех элементов в терминах заполнения водородоподобных атомных орбиталей. Поскольку энергии орбиталей в каждой оболочке одинаковы, этот подход даст забавный вид периодической таблицы. Так как все s-орбитали и p-орбитали (так же как d-орбитали и f-орбитали) в оболочке имеют одну и ту же энергию, мы утрачиваем структуру таблицы, и оказывается, что нет никаких причин для появления у элементов разных химических индивидуальностей. Если угодно, можно представить себе, что группы таблицы (вертикальные колонки) недифференцированы и сложены в кучу одна поверх другой. Однако, поскольку электроны на самом деле взаимодействуют друг с другом и нарушают четырехмерную симметрию кулоновского потенциала, s- и p-орбитали данной оболочки обладают разными энергиями. Коль скоро мы допустили нарушение симметрии, периодическая таблица кристаллизуется, образуя знакомую нам форму (рис. 6.8). Поэтому химия, выраженная в периодической таблице, является изображением лежащей в ее основе симметрии кулоновской потенциальной энергии, нарушаемой взаимодействиями присутствующих в каждом атоме электронов. С этой точки зрения химия вообще есть описание симметрии и ее нарушений, описание отклонений от совершенной симметрии, наделяющих химические элементы индивидуальностью. Менделеев немного знал о симметрии, ничего не знал о скрытой симметрии и еще меньше о нарушении симметрии. Он, надеюсь, увлекся бы мыслью, что его таблица является описанием следствий нарушения симметрии кулоновской потенциальной энергии.

Рис. 6.8. Это фантастическое изображение структуры периодической таблицы. Если мы сбросим со счета взаимодействие между электронами, то каждый электрон будет подвергаться действию высоко симметричного кулоновского потенциала ядра, и периодическая таблица не будет иметь структуры (периоды, однако, сохранятся): это представлено штабелем групп слева на иллюстрации. Но если мы допускаем нарушение симметрии (то есть принимаем в расчет отталкивание между электронами), группы развертываются в знакомую структуру периодической таблицы.

1 ... 45 46 47 48 49 50 51 52 53 ... 107
Перейти на страницу:
На этой странице вы можете бесплатно скачать Десять великих идей науки. Как устроен наш мир. - Питер Эткинз торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...