Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Математика » Мечты об окончательной теории - Стивен Вайнберг

Мечты об окончательной теории - Стивен Вайнберг

Читать онлайн Мечты об окончательной теории - Стивен Вайнберг

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 34 35 36 37 38 39 40 41 42 ... 77
Перейти на страницу:

Даже математики живут все-таки в реальном мире и откликаются на его уроки. В течение двух тысячелетий школьникам преподавалась геометрия Евклида как почти идеальный пример абстрактного дедуктивного способа мышления. Однако благодаря общей теории относительности мы узнали в ХХ в., что евклидова геометрия хорошо работает только потому, что гравитационное поле на поверхности Земли довольно слабо, так что пространство, в котором мы живем, не имеет заметной кривизны. Формулируя свои постулаты, Евклид действовал, по-существу, как физик используя свой опыт жизни в слабых гравитационных полях эллинистической Александрии для создания теории неискривленного пространства. Он не мог знать, насколько ограничена и обусловлена его геометрия. Действительно, только сравнительно недавно мы научились отличать чистую математику от той науки, к которой она применяется. Лукасовскую кафедру в Кембридже занимали Ньютон и Дирак, но тем не менее официально она до сих называется кафедрой математики, а не физики. Только развитие строгого и абстрактного стиля математического мышления[121], восходящее к работам Огюстена Луи Коши и других математиков в начале XIX в., привело к тому, что идеалом математиков стало, чтобы их работы были независимы от опыта и здравого смысла.

Вторая причина, почему мы считаем, что успешные физические теории должны быть красивы, заключается просто в том, что ученые стремятся выбирать для исследования только такие задачи, у которых можно ожидать красивых решений. Точно такой же стиль рассуждений присущ и нашему другу – тренеру. Его работа – тренировать лошадей для того, чтобы они выигрывали скачки; он научился определять, какая из лошадей имеет больше шансов на выигрыш, и называет таких лошадей красивыми; но если вы отведете тренера в сторонку и пообещаете никому не передавать то, что он скажет, то он поклянется вам, что единственная причина, почему он занят этим делом – тренировкой лошадей для выигрыша скачек, заключается в том, что лошади, которых он тренирует, чертовски красивы.

Хороший пример сказанного в физике – явление мягких фазовых переходов27), например спонтанного исчезновения намагниченности при нагревании постоянного железного магнита до температуры выше 770 °С, известной как точка Кюри. Поскольку переход мягкий, намагниченность куска железа обращается в нуль постепенно, при приближении температуры к точке Кюри. Удивительным в таких фазовых переходах является закон, по которому намагниченность стремится к нулю. Оценивая различные энергии в магните, физики были склонны предполагать, что, когда температура чуть ниже точки Кюри, намагниченность должна быть просто пропорциональна квадратному корню из разности между температурой Кюри и температурой нагрева. Вместо этого экспериментально наблюдается, что намагниченность пропорциональна этой разности в степени 0,37. Иными словами, зависимость намагниченности от температуры оказывается где-то в промежутке между законом пропорциональности квадратному корню (показатель степени 0,5) и кубическому корню (показатель степени 0,33) из разности между температурой Кюри и температурой нагрева магнита.

Степени типа 0,37 называются критическими показателями, иногда с добавлением слов «неклассические» или «аномальные», так как эти показатели отличаются от ожидаемых. Было обнаружено, что существуют и другие величины, ведущие себя аналогичным образом в разного рода фазовых переходах, причем в некоторых случаях критические показатели были теми же самыми. Те явления, где возникают критические показатели, не столь впечатляют, как черные дыры или расширение Вселенной. Тем не менее ряд выдающихся физиков-теоретиков во всем мире занимался проблемой критических показателей, пока наконец она не была решена в 1972 г. учеными из Корнеллского университета (США) Кеннетом Вильсоном и Майклом Фишером. Можно было бы думать, что точное вычисление самой точки Кюри имеет значительно больший практический интерес. Почему же корифеи физики твердого тела считали проблему критических показателей намного более важной?

Я полагаю, что эта проблема привлекала такое внимание потому, что физики чувствовали, что она должна иметь очень красивое решение. Указания на это вытекали прежде всего из факта универсальности явления, из того, что одни и те же критические показатели возникали в совершенно разных задачах. Кроме того, физики давно привыкли к тому, что наиболее существенные свойства физических явлений часто выражаются в форме закона, связывающего какую-то физическую величину со степенями других величин (примером может служить закон обратных квадратов для тяготения). Оказалось, что теория критических показателей обладает такой простотой и неизбежностью, что она стала одной из самых красивых теорий во всей физике. В то же время проблема вычисления точной температуры фазовых переходов необычайно запутанна, и ее решение требует знания сложных деталей устройства железа или других веществ, в которых происходит фазовый переход. Люди занимаются этой задачей либо исходя из практических потребностей, либо за неимением лучшего.

В ряде случаев первоначальные надежды ученых на построение красивой теории не оправдывались в полной мере. Хорошим примером может служить история открытия генетического кода. Фрэнсис Крик в своей автобиографии[122] рассказывает, как после открытия им и Джеймсом Уотсоном структуры ДНК в виде двойной спирали внимание всех специалистов по молекулярной биологии обратилось на расшифровку кода, с помощью которого клетка считывает последовательность химических оснований в двух спиралях ДНК как программу для построения нужных белковых молекул. Было известно, что белки строятся из цепочек аминокислот, что существует только двадцать аминокислот, существенных для функционирования практически всех животных и растений, что информация для выбора каждой последующей аминокислоты в молекуле белка заложена в выборе трех последовательных пар химических единиц, называемых основаниями, и, наконец, что имеются только четыре разных типа таких пар. Таким образом, генетический код содержит запись о трех последовательных комбинациях, каждая из которых выбрана из четырех возможных пар оснований, определяющих выбор каждой следующей аминокислоты из двадцати возможных, входящей в состав белковой молекулы. Молекулярные биологи предлагали кучу красивых принципов, управляющих этим кодом, например, что при выборе трех пар оснований никакая информация не будет растрачена впустую, и что любая информация, не требующаяся для определения аминокислоты, будет использована для поиска ошибок (как в компьютерных сетях, когда от одного компьютера к другому передаются лишние биты информации, чтобы убедиться в точности передачи сообщения). Ответ, найденный в 1960 г., оказался совсем иным. Генетический код во многом случаен: некоторые аминокислоты шифруются более чем одной тройкой пар оснований и, наоборот, некоторые тройки пар ничему не соответствуют[123]. Конечно, генетический код не настолько плох, как полностью случайный код, откуда следует, что код как-то менялся в ходе эволюции, но все же любой специалист по передаче сообщений придумал бы код получше. Причина, конечно, в том, что генетический код не был создан, а развивался за счет случайных воздействий с самого начала возникновения жизни на Земле и был унаследован примерно в одном и том же виде всеми организмами. Ясно, что понимание генетического кода настолько важно, что мы изучаем его независимо от того, насколько он красив, но все же немножко жалко, что код оказался не таким красивым, как хотелось бы.

Иногда, когда нас подводит чувство красоты, это происходит потому, что мы переоцениваем фундаментальный характер того, что собираемся объяснить. Знаменитым примером служит работа молодого Иоганнеса Кеплера, посвященная размерам орбит планет.

Кеплер знал об одном из самых красивых утверждений, полученных греческими математиками, касающемся так называемых платоновских тел. Это трехмерные тела с плоскими гранями, причем все вершины, все грани и все ребра этих тел одинаковы. Очевидным примером является куб. Древние греки доказали, что существует всего пять таких платоновских тел: треугольная пирамида (тетраэдр), куб, восьмигранный октаэдр, двенадцатигранный додекаэдр и двадцатигранный икосаэдр. (Свое название эти тела получили потому, что Платон в Тимее предложил взаимно-однозначное соответствие между этими пятью телами и предполагаемыми пятью основными элементами. Такую точку зрения затем критиковал Аристотель.) Существование платоновских тел – пример необычайной математической красоты; она сродни красоте картановского списка всех возможных непрерывных принципов симметрии.

1 ... 34 35 36 37 38 39 40 41 42 ... 77
Перейти на страницу:
На этой странице вы можете бесплатно скачать Мечты об окончательной теории - Стивен Вайнберг торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...