Мечты об окончательной теории - Стивен Вайнберг
Шрифт:
Интервал:
Закладка:
Хотя наивный механицизм, похоже, благополучно скончался, физиков продолжают тревожить другие метафизические предрассудки, особенно те, которые связаны с понятиями пространства и времени. Длительность во времени – единственное, что мы способны измерить (пусть и неточно) силой одной мысли, без участия наших чувств, поэтому естественно думать, что мы можем что-то узнать о размерности времени чисто рациональным путем. Кант учил, что пространство и время не являются частями внешней реальности, а структурами, заранее существующими в нашем мозге и позволяющими связывать между собой вещи и события. Наиболее шокирующим для правоверного кантианца в теориях Эйнштейна было то, что они низвели пространство и время до уровня обычных свойств физической вселенной, которые могут меняться из-за движения (в специальной теории относительности) или тяготения (в общей теории относительности). Даже сегодня, через сто лет после создания специальной теории относительности, некоторые физики все еще полагают, что есть вещи, которые можно сказать о пространстве и времени на основе чистого рассуждения.
Такая оголтелая метафизика вышла на поверхность особенно в дискуссиях о происхождении Вселенной. Согласно стандартной теории Большого взрыва, Вселенная возникла в состоянии бесконечно большой температуры и плотности около десяти–пятнадцати миллиардов лет тому назад. Каждый раз, когда я рассказывал о теории Большого взрыва и дело доходило до вопросов и ответов, кто-нибудь в аудитории обязательно начинал доказывать, что идея начала абсурдна: какой бы момент времени мы ни назвали началом, всегда должен быть момент перед этим. Я всегда пытался объяснять, что это необязательно должно быть так. Например, мы знаем из нашего повседневного опыта, что как бы холодно ни было, всегда может быть еще холоднее, но все-таки существует такое понятие, как абсолютный нуль температуры. Мы не можем достичь температуры ниже абсолютного нуля не потому, что недостаточно умны, а потому, что температура ниже абсолютного нуля просто не имеет смысла. Стивен Хокинг предложил, может быть, еще лучшую аналогию: вполне имеет смысл вопрос о том, что находится севернее Остина, Кембриджа или любого другого города, но не имеет смысла вопрос о том, что находится севернее Северного полюса. Блаженный Августин в «Откровении» вступил в ставшую знаменитой схватку с этой проблемой и пришел к выводу, что вопрос о том, что было перед тем, как Бог создал Вселенную, неверен, так как Бог, сам находящийся вне времени, создал время вместе с самой Вселенной. Такой же точки зрения придерживался Моисей Маймонид.
Должен признать, что на самом деле мы не знаем, началась ли Вселенная в строго определенный момент времени в прошлом. Андрей Линде и другие космологи[132] предложили недавно ряд приемлемых теорий, в которых наша расширяющаяся Вселенная является лишь крохотным пузырьком в бесконечно старой Мегавселенной, в которой происходит вечное рождение и размножение таких пузырьков. Я не буду здесь пытаться доказывать, что наша Вселенная несомненно имеет конечный возраст. Я хочу лишь подчеркнуть, что используя только силу чистого разума, нельзя утверждать, что такое невозможно.
Здесь мы опять даже не уверены, что задаем правильные вопросы. В новейшей версии теории струн пространство и время возникают как выводимые понятия, не содержащиеся в фундаментальных уравнениях теории. В подобных теориях пространство и время имеют ограниченный смысл: нельзя говорить о промежутке времени, который ближе к моменту Большого взрыва, чем 10?42 с. В обыденной жизни мы вряд ли можем заметить интервал времени в одну сотую долю секунды, так что интуитивные представления о природе пространства и времени, полученные из повседневного опыта, не имеют большой ценности при попытках понять теорию происхождения Вселенной.
Однако наибольшие затруднения причиняет современной физике не метафизика, а эпистемология, учение о природе и источниках знания. Эпистемологическая доктрина, называемая позитивизмом (или в некоторых трудах логическим позитивизмом), утверждает не только то, что окончательной проверкой любой теории является ее сопоставление с экспериментальными данными (с чем вряд ли кто будет спорить), но и то, что каждое понятие в наших теориях должно в каждом пункте ссылаться на наблюдаемые величины. Это означает, что хотя физические теории могут включать понятия, все еще не изученные экспериментально, и которые не будут изучены ни в этом году ни в следующем по причине дороговизны исследований, совершенно недопустимо включать в наши теории понятия и элементы, которые в принципе нельзя никогда наблюдать. На карту поставлено многое, так как если принять доктрину позитивизма, то это позволит получить ценные сведения о составных частях окончательной теории, используя мысленные эксперименты для установления того, что в принципе можно наблюдать.
Фигурой, чаще всего ассоциируемой с введением позитивизма в физику, является Эрнст Мах, венский физик и философ конца XIX в. Для него позитивизм был как бы противоядием от метафизики Иммануила Канта. Эйнштейновская статья 1905 г. по специальной теории относительности несет следы очевидного влияния Маха: в ней полно наблюдателей, измеряющих расстояния и времена с помощью линеек, часов и лучей света. Позитивизм помог Эйнштейну избавиться от представления, что утверждение об одновременности двух событий имеет абсолютный смысл. Он убедился, что ни одно измерение не может дать критерий одновременности, одинаковый для всех наблюдателей. Сосредоточенность на том, что реально может быть наблюдено, и составляет суть позитивизма. Эйнштейн высказал Маху свою признательность: в письме к нему несколькими годами спустя он назвал себя «Ваш преданный ученик»[133]. После Первой мировой войны позитивизм получил дальнейшее развитие в трудах Рудольфа Карнапа и членов Венского кружка философов, поставивших целью перестроить науку в соответствии с философски удовлетворительными представлениями. Они во многом преуспели в очистке науки от метафизического хлама.
Позитивизм сыграл также важную роль при зарождении современной квантовой механики. Выдающаяся первая статья Гейзенберга 1925 г.[134] начинается с наблюдения, что «как хорошо известно, формальные правила, использованные [в работе Н. Бора в 1913 г.] для вычисления наблюдаемых величин, таких как энергия атома водорода, могут быть подвергнуты серьезной критике на том основании, что они содержат в качестве основных элементов соотношения между величинами, которые по-видимому в принципе не наблюдаемы, например положением и скоростью обращения электрона». В духе позитивизма Гейзенберг включил в свой вариант квантовой механики только наблюдаемые, например скорость, с которой атом может спонтанно совершать переход из одного состояния в другое, испуская или поглощая квант излучения. Соотношение неопределенностей, являющееся одной из фундаментальных основ вероятностной интерпретации квантовой механики, основано на сделанном Гейзенбергом позитивистском анализе ограничений, с которыми мы сталкиваемся, пытаясь одновременно наблюдать положение частицы и ее импульс.
Несмотря на ценность позитивизма для Эйнштейна и Гейзенберга, он все же принес столько же плохого, сколько хорошего. Тем не менее, в противоположность механистическому мировоззрению, позитивизм сохранил героическую ауру, так что он еще принесет много неприятностей в будущем. Джордж Гейл даже возлагает именно на позитивизм ответственность за теперешнее отчуждение между физиками и философами[135].
Позитивизм стал основой оппозиции атомной теории в начале ХХ в. В XIX в. были блистательно возрождены старые идеи Демокрита и Левкиппа о том, что все вещество состоит из атомов. Джон Дальтон, Амадео Авогадро и их последователи объяснили на основе атомной теории правила химии, свойства газов и природу теплоты. Атомная теория стала частью общепринятого языка физики и химии. Однако позитивисты во главе с Махом рассматривали это как отступление от истинных процедур научного исследования, поскольку никакая техника, которую только можно было в те времена вообразить, не позволяла наблюдать атомы непосредственно. Позитивисты декларировали, что ученые должны сосредоточиться на сообщении результатов наблюдений, например, что при соединении двух объемных частей водорода с одной объемной частью кислорода образуется водяной пар, но не должны забивать головы метафизическими рассуждениями, будто это происходит потому, что молекула воды состоит из двух атомов водорода и одного атома кислорода, так как никто не может наблюдать эти атомы или молекулы. Сам Мах так никогда и не смирился с существованием атомов. Уже в 1910 г., когда атомизм был принят практически всеми, Мах, в полемике с Планком, писал, что «если вера в реальность атомов является столь критической, тогда я отказываюсь от физического образа мышления. В этом случае я не могу оставаться физиком-профессионалом и отказываюсь от своей научной репутации»[136].