Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Математика » Мечты об окончательной теории - Стивен Вайнберг

Мечты об окончательной теории - Стивен Вайнберг

Читать онлайн Мечты об окончательной теории - Стивен Вайнберг

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 32 33 34 35 36 37 38 39 40 ... 77
Перейти на страницу:

Итак, математические структуры, развиваемые учеными для реализации физических принципов, обладают странным свойством подвижности. Их можно переносить от одного концептуального окружения к другому, они могут служить разным целям. Так, лопаточные кости в теле человека играют роль соединения между крыльями и телом птицы или ластами и телом дельфина. Физические принципы приводят к красивым структурам, которые остаются жить, даже когда умирают принципы.

Возможное объяснение было предложено Нильсом Бором[110]. Рассуждая в 1922 г. о будущем своей ранней теории строения атомов, он заметил, что «в математике существует ограниченное число форм, которые нам удается использовать для описания природы, и может так случиться, что кто-нибудь обнаружит правильные формы, исходя из совершенно неверных представлений». Бор оказался совершенно прав в отношении будущего собственной теории: принципы, лежащие в ее основе, были отвергнуты, но мы до сих пор используем некоторые элементы ее языка и методы вычислений.

Именно применение чистой математики к физике дает поразительные примеры эффективности эстетических суждений. Уже давно стало общим местом утверждение, что математики руководствуются в своей работе желанием построить такой формализм, принципы которого красивы. Английский математик Г. Харди пояснял, что «математические структуры должны быть так же красивы, как те, которые используют художники или поэты. Идеи, как краски или слова, должны гармонично сочетаться друг с другом. Красота – первый тест. Уродливой математике нет места»[111]. И вот оказалось, что благоговейно разрабатывавшиеся математиками структуры, в которых они искали красоту, позднее часто становились необычайно важными для физиков.

Для иллюстрации вернемся к примеру с неевклидовой геометрией и общей теорией относительности. В течение двух тысяч лет после Евклида математики пытались выяснить, являются ли независимыми друг от друга те предположения, которые лежат в основе евклидовой геометрии. Если постулаты не независимы, если какие-то из них могут быть выведены из других, тогда лишние должны быть отброшены, что приведет к более экономной, а следовательно более красивой формулировке геометрии. Попытки разобраться в структуре евклидовой геометрии достигли пика к началу XIX в., когда «король геометров» Карл Фридрих Гаусс и другие ученые[112] разработали неевклидову геометрию, применимую для искривленного пространства определенного типа, в котором выполнены все постулаты Евклида, кроме пятого[113]. Этим было доказано, что пятый постулат Евклида действительно логически независим от остальных. Новая геометрия была построена, чтобы ответить на давний вопрос об основаниях геометрии, а совсем не для того, чтобы применять ее к реальному миру.

Затем один из величайших математиков, Георг Фридрих Бернгард Риман, развил неевклидову геометрию, обобщив ее на общую теорию искривленных пространств в двух, трех или произвольном числе измерений. Не имея никакого представления о возможных физических приложениях, математики продолжали трудиться над развитием римановой геометрии, так как она поражала своей красотой. Эта красота во многом опять была красотой неизбежности. Достаточно начать размышлять над свойствами искривленных пространств, и вы почти неизбежно придете к необходимости введения математических понятий (метрика, аффинная связность, тензор кривизны), являющихся неотъемлемыми частями римановой геометрии. Когда Эйнштейн начал развивать общую теорию относительности, он вскоре понял, что один из способов реализации его идей о симметрии между различными системами отсчета заключается в том, чтобы описать тяготение как кривизну пространства-времени. Эйнштейн поинтересовался у своего друга, математика Марселя Гроссмана, не существует ли какой-нибудь теории искривленных пространств – не просто искривленных двумерных поверхностей в обычном трехмерном евклидовом пространстве, а искривленных трехмерных и даже четырехмерных пространств? Гроссман обрадовал Эйнштейна, сказав, что такой математический формализм существует, он развит Риманом и другими математиками. Более того, Гроссман обучил Эйнштейна этой математике, которая затем вошла составной частью в общую теорию относительности. Таким образом, получается, что математика ждала появления Эйнштейна, который сумел ее использовать для физики, хотя я полагаю, что ни Гаусс, ни Риман, ни другие специалисты по дифференциальной геометрии XIX в. понятия не имели, что их работа когда-нибудь будет иметь хоть какое-то отношение к физической теории тяготения.

Еще более странным является пример с историей открытия принципов внутренней симметрии. В физике эти принципы обычно отражают нечто вроде семейных связей между отдельными членами в списке возможных элементарных частиц. Первый известный пример такой симметрии связан с двумя типами частиц, из которых состоят обычные атомные ядра, – протоном и нейтроном. Массы протона и нейтрона почти одинаковы, так что, когда нейтрон был открыт Джеймсом Чедвиком в 1932 г., сразу же возникло естественное предположение, что сильные ядерные силы (дающие вклад в массы нейтрона и протона) должны обладать простой симметрией: уравнения, определяющие эти силы, должны сохранять свой вид, если везде в них поменять местами роли протонов и нейтронов. Помимо прочего, из такой гипотезы следует, что сильные ядерные силы, действующие между двумя нейтронами, равны таким же силам, действующим между двумя протонами. Однако ничего нельзя сказать о силе, действующей между протоном и нейтроном. Поэтому несколько неожиданным оказался результат экспериментов, подтвердивших в 1936 г., что ядерные силы, действующие между двумя протонами, равны таким же силам, действующим между протоном и нейтроном[114] Это наблюдение породило идею симметрии, выходящей за рамки простой замены протонов на нейтроны и наоборот. Речь идет о симметрии по отношению к непрерывным преобразованиям, превращающим протоны и нейтроны в частицы, являющиеся суперпозициями протонов и нейтронов, с произвольной вероятностью находиться в протонном или нейтронном состояниях.

Подобные преобразования симметрии действуют на метку частицы, которая отличает протоны от нейтронов, способом, который математически совпадает с тем, как обычные вращения в трехмерном пространстве действуют на спины частиц, вроде протона, нейтрона или электрона[115]. Помня об этом примере, многие физики вплоть до начала 60-х гг. молчаливо предполагали, что по аналогии с вращениями, переводящими протон и нейтрон друг в друга, все преобразования внутренней симметрии, оставляющие неизменными законы природы, должны иметь форму вращений в некотором внутреннем пространстве двух, трех или более измерений. Учебники, в которых излагалось применение принципов симметрии к физике (включая классические книги Германа Вейля и Юджина Вигнера) даже не упоминали о других математических возможностях. Только в конце 50-х гг., после открытия множества новых частиц сначала в космических лучах, а позднее на ускорителях вроде бэватрона в Беркли, в среде физиков-теоретиков возникло более широкое понимание возможностей описания внутренних симметрий. Новые частицы, казалось, объединялись в значительно более обширные семейства, чем простая пара протон-нейтрон. Например, обнаружилось, что протон и нейтрон несут черты фамильного сходства с шестью другими частицами, называемыми гиперонами и имеющими тот же спин и близкие массы. Какой же тип внутренней симметриии может порождать такие обширные родственные группы?

В начале 60-х гг. физики, занимавшиеся этим вопросом, обратились за помощью к литературе по математике. Для них оказалось приятным сюрпризом, что математики уже давно составили в некотором смысле полный каталог всех возможных симметрий. Полный набор преобразований, оставляющих что-то неизменным, будь то конкретный объект или законы природы, образует математическую структуру, называемую группой, а раздел математики, изучающий преобразования симметрии, называется теорией групп[116]. Каждая группа характеризуется абстрактными математическими правилами, не зависящими от того, что подвергается преобразованию, так же как правила арифметики не зависят от названий тех величин, которые мы складываем или умножаем. Список типов семейств, разрешенных каждой конкретной симметрией законов природы, полностью определяется математической структурой группы симметрии.

Те группы преобразований, которые действуют непрерывно, наподобие вращений в обычном пространстве или смешивания электронов и нейтрино в электрослабой теории, называются группами Ли – по имени норвежского математика Софуса Ли. Французский математик Эли Картан в своей диссертации в 1894 г. дал полный список всех «простых» групп Ли[117], с помощью комбинаций которых можно построить все остальные группы. В 1960 г. Мюррей Гелл-Манн и израильский физик Ювал Нееман независимо обнаружили, что одна из этих простых групп Ли, известная под названием SU(3), как раз правильно описывает структуру семейств множества элементарных частиц в согласии с экспериментальными данными. Гелл-Манн позаимствовал некоторые понятия буддизма и назвал новую симметрию восьмеричным путем26), так как известные на опыте частицы лучше всего делились на семейства по восемь членов, как протон, нейтрон и шесть их родственников. К тому времени не все семейства были полными. Так, нужна была новая частица, чтобы заполнить семейство из десяти частиц, похожих на нейтрон, протон и гипероны, но имеющих втрое больший спин. Одним из больших успехов новой SU(3) симметрии стало то, что предсказанная частица была обнаружена в 1964 г. в Брукхейвене[118], причем значение ее массы совпало с теоретической оценкой Гелл-Манна.

1 ... 32 33 34 35 36 37 38 39 40 ... 77
Перейти на страницу:
На этой странице вы можете бесплатно скачать Мечты об окончательной теории - Стивен Вайнберг торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...