Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Леонард Сасскинд
Шрифт:
Интервал:
Закладка:
Вот как рассуждал Бекенштейн. Энтропия всегда сопутствует энергии. Она связана с числом комбинаций чего-то, а это что-то во всех случаях является энергией. Даже чернила на этой странице состоят из имеющих массу атомов, которые, согласно Эйнштейну, обладают энергией, поскольку масса — это форма энергии. Можно сказать, что энтропия соответствует числу возможных способов организации порций энергии.
Когда Бекенштейн в своем воображении засовывал контейнер с горячим газом в черную дыру, он добавлял ей энергию. Это оборачивалось увеличением массы и размеров черной дыры. Вели, как предположил Бекенштейн, черные дыры имеют энтропию, которая растет вместе с их массой, то появляется шанс спасти второе начало. Энтропия черной дыры должна возрастать сильнее, чем необходимо для компенсации потерь.
Прежде чем рассказывать, как Бекенштейн вывел формулу для энтропии черной дыры, надо объяснить, почему эта идея была такой шокирующей, что, согласно Хокингу, он первоначально отбросил ее как вздорную[71].
Энтропия учитывает различные варианты организации, но что это такое? Если горизонт черной дыры лишен деталей, как самая гладкая из мыслимых лысин, то что там подсчитывать? По этой логике, черная дыра должна иметь нулевую энтропию. Утверждение Джона Уилера о том, что «черные дыры не имеют волос», выглядит прямо противоречащим теории Якоба Бекенштейна.
Как примирить учителя и студента? Позвольте привести поясняющий пример. Отпечаток на листе с разными градациями серого в действительности состоит из крошечных черных и белых точек. Предположим, в нашем распоряжении имеется миллион черных точек и миллион белых. Один из возможных рисунков получается, если разделить страницу пополам по вертикали или по горизонтали. Одну половину можно сделать черной, другую — белой. Есть только четыре способа выполнить это.
Получается четкий рисунок с резкими контрастами, но имеющий всего несколько вариаций. Четкий рисунок с резкими контрастами обычно означает низкую энтропию.
Теперь выберем другую крайность и равномерно распределим по той же площади равное число черных и белых пикселов. Получится более или менее однородный серый цвет. Если пикселы действительно маленькие, этот серый фон будет выглядеть совершенно однородным. Имеется колоссальное число способов перераспределить черные и белые точки так, что мы не различим варианты без увеличительного стекла.
В этом случае видно, что высокая энтропия часто сопутствует однородному, «лысому» виду.
Связь внешней однородности и высокой энтропии указывает на нечто важное. Она подразумевает, что система, какой бы она ни была, должна состоять из большого числа микроскопических объектов, которые (а) слишком малы, чтобы их увидеть, и (б) могут комбинироваться множеством разных способов без изменения общего вида системы.
Бекенштейн вычисляет энтропию черной дырыМысль Бекенштейна о том, что черные дыры обладают энтропией, то есть, иными словами, несмотря на свою безволосость, содержат скрытую информацию, оказалась одним из тех простых, но глубоких суждений, которые одним махом меняют ситуацию в физике. Когда я начинал писать книги для широкой публики, мне настоятельно советовали ограничиться одной-единственной формулой: E = mc2. Мне говорили, что с каждым дополнительным уравнением продажи книги будут падать на десять тысяч экземпляров. Если честно, это противоречит моему опыту. Так что после долгих колебаний я решил пойти на риск. Доказательство Бекенштейна столь необычайно простое и красивое, что отказ от него обесценил бы эту книгу. Тем не менее я приложил усилия и разъяснил результаты так, чтобы менее склонные к математике читатели могли спокойно пропустить несколько простых формул, не теряя понимания сути.
Бекенштейн не ставил впрямую вопрос о том, сколько битов можно скрыть внутри черной дыры данного размера. Вместо этого он задался вопросом о том, как изменится размер черной дыры, если сбросить в нее один бит информации. Это похоже на вопрос о том, насколько поднимется уровень воды в ванне, если добавить в нее одну каплю воды. Точнее даже: насколько он поднимется при добавлении одного атома?
Сразу возник другой вопрос: а как добавить один бит? Может быть, для этого Бекенштейну надо бросить в черную дыру одну точку, напечатанную на клочке бумаги? Очевидно, нет; точка состоит из огромного числа атомов, и то же самое относится к бумаге. Поэтому в точке содержится куда больше одного бита информации. Лучший подход — это вбросить одну элементарную частицу.
Предположим, например, что в черную дыру падает одиночный фотон. Даже один фотон может нести более одного бита информации. В частности, масса информации содержится в координатах точки, где фотон пересекает горизонт. Здесь Бекенштейн ловко применил гейзенберговскую концепцию неопределенности. Он посчитал, что положение фотона должно быть максимально неопределенным, лишь бы только он попадал в черную дыру. Такой «неопределенный фотон» несет лишь один бит информации, а именно находится ли он где-то внутри черной дыры.
Если помните, в главе 4 говорилось о том, что разрешающая способность светового луча не превышает длины его волны. В данном случае Бекенштейн не собирался рассматривать детали на горизонте; наоборот, горизонт должен был выглядеть максимально размытым. Хитрость была в том, чтобы использовать такой длинноволновый фотон, чтобы он распределился по всему горизонту. Иными словами, если горизонт имеет шварцшильдовский радиус то фотон должен иметь такую же длину волны. Кажется, что можно использовать и более длинные волны, но такие фотоны будут отскакивать от черной дыры, а не захватываться ею.
Бекенштейн подозревал, что добавление лишнего бита к черной дыре вызовет прирост ее размера, пусть и очень небольшой, подобно тому как добавление лишней молекулы резины к воздушному шарику ненамного его увеличит. Однако для вычисления этого прироста требуется несколько промежуточных шагов. Давайте сначала бегло с ними ознакомимся.
1. Первым делом надо узнать, насколько увеличится энергия черной дыры при добавлении одного бита информации.
2. Далее нужно определить, насколько изменится масса черной дыры с добавлением лишнего бита. Для этого вспомним знаменитую формулу Эйнштейна:
E = mc2
Однако нам понадобится обратить ее, что позволит узнать изменение массы по величине добавленной энергии.
3. Когда масса определена, можно вычислить изменение шварцшильдовского радиуса, используя ту же формулу, которую вывели Митчел, Лаплас и Шварцшильд (см. главу 2):
Rs = 2MG/c2
4. Наконец, надо определить прирост площади горизонта. Для этого нужна формула площади сферы:
Площадь горизонта = 4πRs2.
Начнем с энергии однобитного фотона. Как я уже объяснял, фотон должен иметь достаточно большую длину волны, чтобы его положение внутри черной дыры было неопределенным. Это значит, что длина волны должна быть Rs. Согласно Эйнштейну, фотон с длиной волны Rs имеет энергию E, определяемую следующей формулой:[72]
Е = hc/Rs.
В этой формуле h — постоянная Планка, а с — скорость света. Из нее следует, что сбрасывание в черную дыру одного бита информации добавляет ей энергию величиной hc/Rs.
Следующий шаг — это расчет изменения массы черной дыры. Для пересчета энергии в массу ее надо разделить на с2, а значит, масса черной дыры возрастет на величину h/Rsc:
Изменение массы = h/Rsc.
Подставим в эту формулу числа, чтобы увидеть, сколько же добавит один бит к массе черной дыры, имеющей массу Солнца.
Постоянная Планка, h = 6,6x10-34
Шварцшильдовский радиус черной дыры, Rs = 3000 м
Скорость света, с = 3х108
Гравитационная постоянная, G = 6,7х10-11
Таким образом, один бит информации добавляет к черной дыре солнечной массы поразительно малую величину:
Прирост массы = 10-45 килограмма.
И все же, как говорится, «это больше, чем ничто»[73].
Перейдем к третьему шагу: используем связь между массой и радиусом для вычисления изменения Rs. В алгебраической форме ответ будет таким:
Прирост Rs = 2hG / (Rs с3).
У черной дыры солнечной массы Rs составляет около 3000 м. Если подставить все числа, то окажется, что радиус увеличится на 10-72 м. Это не только безмерно меньше протона, но также безмерно меньше планковской длины (10-35 м). При таком малом изменении непонятно, зачем мы вообще это вычисляем, но было бы ошибкой пренебречь этой малостью.
Последний шаг состоит в определении того, насколько изменится площадь горизонта. Для черной дыры солнечной массы прирост площади горизонта составляет около 10-70 квадратного метра. Это очень малая величина, но опять, «это больше, чем ничто». И не просто больше, чем ничто, а нечто совершенно особое: 10-70 м2, оказывается, как раз равняется одной квадратной планковской единице.