Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Прочая научная литература » Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Леонард Сасскинд

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Леонард Сасскинд

Читать онлайн Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Леонард Сасскинд

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 27 28 29 30 31 32 33 34 35 ... 86
Перейти на страницу:

Частью этой проблемы было мое полное непонимание температуры. Согласно моему профессору, температура — это то, что измеряется термометром. «Да, — мог бы спросить я, — но что это такое?» Я совершено уверен, что ответом было бы: «Я уже сказал вам; это то, что измеряется термометром».

Определять энтропию через температуру — это запрягать телегу впереди лошади. Хотя мы и правда обладаем врожденным чувством температуры, более абстрактные концепции энергии и энтропии гораздо фундаментальнее. Профессор должен был сначала объяснить, что энтропия — это мера скрытой информации и выражается в битах. А затем он мог переходить к утверждению (корректному):

Температура — это прирост энергии системы при добавлении одного бита энтропии[81].

Изменение энергии при добавлении одного бита? Это же в точности то, что вычислил для черной дыры Бекенштейн. Похоже, он, сам того не осознавая, подсчитал температуру черной дыры.

Хокинг немедленно заметил упущение Бекенштейна, но мысль о том, что черная дыра имеет температуру, показалась Стивену столь абсурдной, что его первой реакцией было отбросить как недоразумение энтропию вместе с температурой. Возможно, отчасти причиной этого отторжения было то, что смехотворной идеей казалось испарение черной дыры. Я точно не знаю, что заставило Стивена передумать, но он это сделал. Используя сложнейшую математику квантовой теории поля, он нашел собственный способ доказать, что черные дыры излучают энергию.

Термин «квантовая теория поля» отражает замешательство, возникшее при открытии Эйнштейном фотонов. С одной стороны, Максвелл убедительно доказал, что свет — это волнообразное возмущение электромагнитного поля. Он и другие рассматривали пространство как нечто, способное колебаться, почти как студень в миске. Гипотетический студень называли светоносным эфиром, и, как по студню, под действием вибрации (например, от дрожащей вилки) по нему распространялись возмущения. Максвелл представлял себе колеблющиеся электрические заряды, распределенные по эфиру и излучающие световые волны. Эйнштейновские фотоны запутали все более чем на двадцать лет, пока Поль Дирак не применил наконец мощный математический аппарат квантовой механики к волнообразным колебаниям электромагнитного поля.

Для Хокинга самым важным следствием квантовой теории поля была идея о том, что электромагнитное поле подвержено «квантовой дрожи» (см. главу 4) даже в отсутствие возмущающих его зарядов. В пустом пространстве электромагнитное поле мерцает и колеблется за счет вакуумных флуктуаций. Почему мы не чувствуем этих вибраций в пустом пространстве? Вовсе не потому, что они очень слабые. На самом деле колебания электромагнитного поля в небольшой области пространства чрезвычайно сильны. Но поскольку пустое пространство обладает меньшей энергией, чем что-либо иное, энергия квантовых флуктуаций никаким способом не может передаться нашим телам.

В природе существует и другой тип дрожания, который очень заметен, — это тепловая дрожь. В чем разница между котлом холодной воды и котлом горячей воды? В температуре, скажете вы. Но это просто способ сказать, что горячая вода ощущается как горячая, а холодная — как холодная. В действительности различие состоит в том, что горячая вода обладает большей энергией и энтропией — котел заполнен хаотически, беспорядочно движущимися молекулами, за которыми очень трудно уследить. Это движение не имеет никакого отношения к квантовой механике и вовсе не является малозаметным. Суньте палец в котел, и вы без проблем заметите тепловые флуктуации.

Беспорядочное тепловое движение отдельных молекул нельзя увидеть, поскольку молекулы воды слишком малы, но прямые следствия теплового дрожания нетрудно заметить. Как я уже упоминал, частицы пыльцы, находящиеся в стакане теплой воды, будут беспорядочно дергаться, совершая броуновское движение, которое никак не связано с квантовой механикой. Эта теплота, содержащаяся в воде, заставляет ее молекулы беспорядочно бомбардировать частицы пыльцы. Если опустить палец в стакан, та же беспорядочная бомбардировка вашей кожи возбудит нервные окончания и вызовет ощущение теплой воды. Кожа и нервы при этом поглощают немного энергии из окружающей среды.

Даже в отсутствие воды, воздуха и любого другого вещества чувствительные к теплу нервы могут возбуждаться тепловыми вибрациями излучения черного тела. В этом случае нервы получают тепло из окружающей среды, поглощая фотоны. Но это возможно, только если температура выше абсолютного нуля. При абсолютном нуле квантовая дрожь электрического и магнитного полей куда более трудноуловима и не имеет столь очевидных проявлений.

Два типа дрожи — тепловая и квантовая — очень разные, и в обычных условиях их между собой не перепутаешь. Квантовые флуктуации — это неотъемлемое свойство вакуума, и от них нельзя избавиться, тогда как тепловые флуктуации возникают от избытка энергии. Хитрость квантовых флуктуаций — почему мы их не ощущаем и в чем их отличие от тепловых флуктуаций — лежит на грани объяснимого в книге, в которой стараешься избегать сложной математики; любая аналогия или картинка, которую я использую, будет логически некорректна. Но какое-то объяснение необходимо, если вы хотите уловить, каковы были ставки в Битве при черной дыре. Только не забывайте предупреждение Фейнмана относительно объяснения квантовых явлений (см. с. 85).

Квантовая теория поля предлагает способ визуализации двух типов квантовых флуктуаций. Тепловые флуктуации связаны с присутствием реальных фотонов, бомбардирующих нашу кожу и передающих ей энергию. Квантовые флуктуации вызваны парами виртуальных фотонов, которые возникают, а затем быстро вновь поглощаются вакуумом. Вот фейнмановская диаграмма пространства-времени — время по вертикали, пространство по горизонтали — для двух реальных фотонов и виртуальных пар.

Реальные фотоны — это прямые пунктирные линии. Их присутствие указывает на теплоту и тепловую дрожь. Но если пространство находится при абсолютном нуле, реальных фотонов не будет. Остаются лишь микроскопические петли виртуальных фотонов, которые быстрыми вспышками обретают и утрачивают существование. Пары виртуальных фотонов составляют часть вакуума — того, что мы называем пустым пространством, — даже когда температура равна абсолютному нулю.

В обычных условиях два типа дрожи нельзя спутать. Однако горизонт черной дыры — вещь необычная. Вблизи горизонта эти два типа флуктуаций начинают смешиваться таким способом, которого никто никогда не ожидал. Чтобы получить представление о том, как это происходит, вообразите Алису, свободно падающую в черную дыру в среде, имеющей температуру абсолютного нуля, — в абсолютном вакууме. Она окружена парами виртуальных фотонов, но она их не замечает. Реальных фотонов вокруг нее нет.

Теперь рассмотрим Боба, который висит над горизонтом. Для него все сильно запутывается. Некоторые пары виртуальных фотонов — те, что не замечает Алиса, — могут частично находиться внутри горизонта, а частично вовне. Но частица, находящаяся за горизонтом, лишена всякой связи с Бобом. Он видит лишь один фотон и не может распознать, что он принадлежит виртуальной паре. Верите вы или нет, но такой фотон, застрявший вовне, в то время как его партнер оказался за горизонтом, будет воздействовать на Боба и его кожу в точности так же, как если бы это был обычный тепловой фотон. Вблизи горизонта разделение теплового и квантового зависит от наблюдателя: то, что Алиса воспринимает (или не воспринимает) как квантовый шум, Боб регистрирует как тепловую энергию. В случае черной дыры тепловые и квантовые флуктуации становятся двумя сторонами одной медали. Мы вернемся к этому вопросу в главе 20, когда будем рассматривать Алисин самолет.

Опираясь на математику квантовой теории поля, Хокинг рассчитал, что флуктуации вакуума в присутствии черной дыры приводят к испусканию фотонов, в точности как если бы горизонт черной дыры был горячим черным телом. Эти фотоны называются хокинговским излучением. Самое интересное, что черная дыра излучает так, как будто ее температура примерно равна той, что получилась бы из доказательства Бекенштейна, если бы сам Бекенштейн сделал этот вывод. В действительности Хокинг пошел дальше Бекенштейна; его методы оказались столь аккуратны, что позволили вычислить точную температуру, а по ней и энтропию черной дыры. Бекенштейн утверждал лишь, что энтропия пропорциональна площади горизонта, измеренной в планковских единицах. Хокингу уже не требовалось использовать неопределенный термин «пропорциональна». Согласно его расчетам, энтропия черной дыры в точности равна одной четверти площади горизонта, измеренной в планковских единицах.

1 ... 27 28 29 30 31 32 33 34 35 ... 86
Перейти на страницу:
На этой странице вы можете бесплатно скачать Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Леонард Сасскинд торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...