Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Математика » Maple 9.5/10 в математике, физике и образовании - Владимир Дьяконов

Maple 9.5/10 в математике, физике и образовании - Владимир Дьяконов

Читать онлайн Maple 9.5/10 в математике, физике и образовании - Владимир Дьяконов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 92 93 94 95 96 97 98 99 100 ... 125
Перейти на страницу:

Этот пример иллюстрирует использование «жирных» стрелок для обозначения векторного поля. Наглядность графика повышается благодаря наложению стрелок на график плотности, который лучше, чем собственно стрелки, дает представление о плавности изменения высоты поверхности, заданной функцией f.

8.5.12. Новая функция сравнения двух зависимостей от комплексного аргумента

В пакет Plots СКМ Maple 9.5 введена новая функция для сравнения двух зависимостей f(z) и g(z) комплексного аргумента z. Функция может использоваться в нескольких формах:

plotcompare(f(z), g(z), z = a+c*I..b+d*I, options);

plotcompare(f(z) = g(z), ...);

plotcompare(f, g, a+c* I..b+d*I, options);

plotcompare(f=g, ...);

Здесь a, b, c, d - константы реального типа. Функция на одном рисунке строит графики действительной и мнимой частей зависимостей f(z) и g(z). С помощью опций можно менять цветовую гамму рисунков, их ориентацию в пространстве и др. характеристики графиков. В справке по данной функции дается множестве примеров ее применения, так что ограничимся одним, показанным на рис. 8.36.

Рис. 8.16. Пример графического сопоставления двух зависимостей от комплексного аргумента

Сравнение графиков двух зависимостей, представленных на рис. 8.36 наглядно выявляет существенные отличия этих зависимостей. Достаточно отметить, что на графиках действительных частей зависимостей в одном случае видна выпуклая, а в другом случае вогнутая поверхности. Еще сильнее отличия в графиках мнимых частей сопоставляемых зависимостей.

8.6. Динамическая графика

8.6.1. Анимация двумерных графиков

Визуализация графических построений и результатов моделирования различных объектов и явлений существенно повышается при использовании средств «оживления» (анимации) изображений. Пакет plots имеет две простые функции для создания динамических (анимированных) графиков.

Первая из этих функций служит для создания анимации графиков, представляющих функцию одной переменной F(x):

animatecurve(F, r, ...)

Эта функция просто позволяет наблюдать медленное построение графика. Формат ее применения подобен используемому в функции plot.

При вызове данной функции вначале строится пустой шаблон графика. Если активизировать шаблон мышью, то в строке главного меню появляется меню Animation. Меню Animation содержит команды управления анимацией. Такое же подменю появляется и в контекстном (рис. 8.37).

Рис. 8.37. Пример анимационного построения графика функцией animatecurve

Указанное подменю содержит следующие команды анимации:

• Play — запуск построения графика;

• Next — выполнение следующего шага анимации;

• Backward/Forward — переключение направления анимации (назад/вперед);

• Faster — ускорение анимации;

• Slower — замедление анимации;

• Continiuus/Single cycle — цикличность анимации.

При исполнении команды Play происходит построение кривой (или нескольких кривых). В зависимости от выбора команд Faster или Slower построение идет быстро или медленно. Команда Next выполняет один шаг анимации — построение очередного фрагмента кривой. Переключатель Backward/Forward позволяет задать направление построения кривой — от начала к концу или от конца к началу. Построение может быть непрерывным или циклическим в зависимости от состояния позиции Continiuus/Single cycle в подменю управления анимацией. При циклической анимации число циклов задается параметром frames=n.

8.6.2. Проигрыватель анимированной графики

При включенном выводе панели форматирования во время анимации она приобретает вид панели проигрывателя клипов (рис. 8.37). Эта панель имеет кнопки управления с обозначениями, принятыми у современных проигрывателей, например магнитофонов

1. Поле координат перемещающейся точки графика.

2. Остановка анимации

3. Пуск анимации

4. Переход к следующему кадру (фрейму).

5. Установка направления анимации от конца в начало.

6. Установка направления анимации из начала в конец (по умолчанию).

7. Уменьшение времени шага анимации.

8. Увеличение времени шага анимации.

9. Установка одиночного цикла анимации.

10. Установка серии циклов анимации.

Итак, кнопки проигрывателя по существу повторяют команды подменю управления анимацией.

Нажав кнопку пуска (с треугольником, острием обращенным вправо), можно наблюдать изменение вида кривой для функции sin(х)/(х). Другие кнопки управляют характером анимации. Проигрыватель дает удобные средства для демонстрации анимации, например, во время занятий со школьниками или студентами.

8.6.3. Построение двумерных анимированных графиков

Более обширные возможности анимации двумерных графиков обеспечивает функция animate:

animate(F, х, t)

animate(F, x, t, o)

В ней параметр x задает пределы изменения переменной х, а параметр t — пределы изменения дополнительной переменной t. Суть анимации при использовании данной функции заключается в построении серии кадров (как в мультфильме), причем каждый кадр связан со значением изменяемой во времени переменной t. Если надо явно задать число кадров анимации N, то в качестве о следует использовать frame=N.

Рисунок 8.38 показывает применение функции animate.

Рис. 8.38. Анимация функции sin(i*x)/(i*x) на фоне неподвижной синусоиды

В документе рис. 8.38 строятся две функции — не создающая анимации функция sin(x) и создающая анимацию функция sin(i*x)/(i*x), причем в качестве переменной t задана переменная i. Именно ее изменение и создает эффект анимации. Проигрыватель анимационных клипов и меню, описанные выше, могут использоваться для управления и этим видом анимации. Обратите внимание на вызов графических функций в этом примере командой with и на синтаксис записи этих функций.

К сожалению, картинки в книгах всегда неподвижны и воспроизвести эффект анимации невозможно. Можно лишь представить несколько текущих кадров анимации. Представленная на рис. 8.38 картина соответствует последнему кадру анимации.

Анимация графиков может найти самое широкое применение при создании учебных материалов. С ее помощью можно акцентировать внимание на отдельных параметрах графиков и образующих их функций и наглядно иллюстрировать характер их изменений.

8.6.4. Построение трехмерных анимационных графиков

Аналогичным образом может осуществляться и анимация трехмерных фигур. Для этого используется функция animate3d:

animate3d(F,х,у,t,o)

Здесь F — описание функции (или функций); х, у и t — диапазоны изменения переменных х, у и t. Для задания числа кадров N надо использовать необязательный параметр о в виде frame=N. Примеры применения этой функции мы рассмотрим позже.

На рис. 8.39 показано построение графика с анимацией. После задания функции, график которой строится, необходимо выделить график и запустить проигрыватель, как это описывалось для анимации двумерных графиков.

Рис. 8.39. Подготовка трехмерного анимационного графика

На рис. 8.39 показано также контекстное меню поля выделенного графика. Нетрудно заметить, что с помощью этого меню (и содержащихся в нем подменю) можно получить доступ к параметрам трехмерной графики и выполнить необходимые операции форматирования, такие как включение цветовой окраски, выбор ориентации фигуры и т.д.

Назначение параметров, как и средств управления проигрывателем анимационных клипов, было описано выше.

8.6.5. Анимация с помощью параметра insequence

Еще один путь получения анимационных рисунков — создание ряда графических объектов p1, p2, p3 и т.д. и их последовательный вывод с помощью функций display или display3d:

display(p1,p2,р3,..nsequence=true)

display3d(p1,p2,p3...,insequence=true)

Здесь основным моментом является применение параметра insequence=true. Именно он обеспечивает вывод одного за другим серии графических объектов р1, р2, p3 и т.д. При этом объекты появляются по одному, и каждый предшествующий объект стирается перед появлением нового объекта. Этот метод анимации мы рассмотрим чуть позже.

8.7. Графика пакета plottools

8.7.1. Примитивы пакета plottools

Инструментальный пакет графики plottools служит для создания графических примитивов, строящих элементарные геометрические объекты на плоскости и в пространстве: отрезки прямых и дуг, окружности, конусы, кубики и т.д. Его применение позволяет разнообразить графические построения и строить множество графиков специального назначения. В пакет входят следующие графические примитивы:

arc          arrow       circle      cone       cuboid

1 ... 92 93 94 95 96 97 98 99 100 ... 125
Перейти на страницу:
На этой странице вы можете бесплатно скачать Maple 9.5/10 в математике, физике и образовании - Владимир Дьяконов торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...