Откуда берутся дети? Краткий путеводитель по переходу из лагеря чайлдфри к тихим радостям семейственности - Анастасия Андреевна Казанцева
Шрифт:
Интервал:
Закладка:
13. Schulz, L. C. (2010). The Dutch Hunger Winter and the develop-mental origins of health and disease. PNAS, 107 (39), 16757–16758.
14. Stanner, S. A. & Yudkin, J. S. (2001). Fetal programming and the Leningrad Siege study. Twin Research and Human Genetics, 4, 287–292.
15. Arima, Y. & Fukuoka, H. (2020). Developmental origins of health and disease theory in cardiology. Journal of Cardiology, 76, 14–17.
16. Cohen, J. H. & Kim, H. (2009). Sociodemographic and health characteristics associated with attempting weight loss during pregnancy. Preventing Chronic Disease, 6 (1), A07.
17. Ante, Z. et al. (2020). Pregnancy outcomes in women with anorexia nervosa. Eating disorders, 53 (5), 673–682.
18. Mirghani, H. M. & Hamud, O. A. (2006). The effect of maternal diet restriction on pregnancy outcome. American Journal of Perinatology, 23 (1), 21–24.
19. Faris, M. A. E. & Al-Holy, M. A. (2014). Implications of Ramadan intermittent fasting on maternal and fetal health and nutritional status: a review. Mediterranean Journal of Nutrition and Metabolism, 7, 107–118.
20. Chen, Y. et al. (2023). Chrononutrition during pregnancy and its association with maternal and offspring outcomes: a systematic review and meta-analysis of Ramadan and non-Ramadan studies. Nutrients, 15, 756.
21. Dong, J-Y. et al. (2020). Skipping breakfast before and during early pregnancy and incidence of gestational diabetes mellitus: the Japan Environment and Children Study. The American Journal of Clinical Nutrition, 111 (4), 829–834.
22. Mazumder, B. & Seeskin, Z. (2015). Breakfast skipping, extreme commutes, and the sex composition at birth. Biodemography and Social Biology, 61 (2), 187–208.
23. Oliver-Van Stichelen, S. & Hanover, J. A. (2015). You are what you eat: O-linked N-acetylglucosamine in disease, development and epigenetics. Current Opinion in Clinical Nutrition and Metabolic Care, 18 (4), 339–345.
24. Wang, Y. et al. (2019). Epigenetic regulation and risk factors during the development of human gametes and early embryos. Annual Review of Genomics and Human Genetics, 20, 21–40.
25. Zuccarello, D. et al. (2022). Epigenetics of pregnancy: looking beyond the DNA code. Journal of Assisted Reproduction and Genetics, 39, 801–816.
26. Li, S. et al. (2019). Prenatal epigenetics diets play protective roles against environmental pollution. Clinical Epigenetics, 11, 82.
27. Sarkar, D. K. et al. (2019). Persistent changes in stress-regulatory genes in pregnant woman or a child with prenatal alcohol exposure. Alcoholism, Clinical and Experimental Research, 43 (9), 1887–1897.
28. Toledo-Rodriguez, M. et al. (2010). Maternal smoking during pregnancy is associated with epigenetic modifications of the brain-derived neurotrophic factor-6 exon in adolescent offspring. American Journal of Medical Genetics, 153B (7), 1350–1354.
29. WHO (2011). Toxicological and health aspects of bisphenol A. Report of joint FAO/WHO expert meeting. Ottawa, Canada.
Глава 8. После родов уже поздно? Очень раннее умственное развитие
1. Lucas, A. et al. (1992). Breast milk and subsequent intelligence quotient in children born preterm. The Lancet, 339, 261–264.
2. Kramer, M. S. et al. (2008). Breastfeeding and child cognitive development: new evidence from a large randomized trial. Archives of General Psychiatry, 65 (5), 578–584.
3. Horta, B. L. et al. (2015). Breastfeeding and intelligence: a systematic review and meta-analysis. Acta Paediatrica, 104, 14–19.
4. Colen, C. G. & Ramey, D. M. (2014). Is breast truly best? Estimating the effect of breastfeeding on long-term child wellbeing in the United States using sibling comparisons. Social Science and Medicine, 109, 55–65.
5. Bliddal, M. et al. (2014). Maternal pre-pregnancy BMI and intelligence quotient (IQ) in 5-year-old children: a cohort based study. PLoS One, 9 (4), e94498.
6. Eichholzer, M. et al. (2006). Folic acid: a public-health challenge. Lancet, 367, 1352–1361.
7. Bitzer, J. et al. (2013). Women’s awareness and periconceptional use of folic acid: data from a large European study. International Journal of Women’s Health, 5, 201–213.
8. Virdi, S. & Jadavji, N. M. (2022). The impact of maternal folates on brain development and function after birth. Metabolites, 12, 876.
9. Tahaei, H. et al. (2022). Omega-3 fatty acid intake during pregnancy and child neuropsychological development: a multi-centre population-based birth cohort study in Spain. Nutrients, 14 (3), 518.
10. Sherzai, D. et al. (2023). A systematic review of omega-3 fatty acid consumption and cognitive outcomes in neurodevelopment. American Journal of Lifestyle Medicine 17 (5), 649–685.
11. Nevins, J. E. H. et al. (2021). Omega-3 fatty acid dietary supplements consumed during pregnancy and lactation and child neurodevelopment: a systematic review. The Journal of Nutrition, 151 (11), 3483–3494.
12. Khalid, W. et al. (2022). Functional behavior of DHA and EPA in the formation of babies brain at different stages of age, and protect from different brain-related diseases. International Journal of Food Properties, 25 (1), 1021–1044.
13. Cortes-Albornoz, M. C. et al. (2021). Maternal nutrition and neurodevelopment: a scoping review. Nutrients, 13, 3530.
14. Heland, S. et al. (2022). The role of nutrients in human neurodevelopment and their potential to prevent neurodevelopmental adversity. Frontiers in Nutrition, 9, 992120.
15. Rauscher, F. H. et al. (1993). Music and spatial task performance. Nature, 365 (6447), 611.
16. Pietschnig, J. et al. (2010). Mozart effect – Shmozart effect: a meta-analysis. Intelligence, 38, 314–323.
17. Borsani, E. et al. (2019). Correlation between human nervous system development and acquisition of fetal skills: an overview. Brain & Development, 41 (3), 225–233.
18. Kadic, A. S. & Kurjak, A. (2018). Cognitive functions of the fetus. Ultraschall in der Medizin, 39 (2), 181–189.
19. Kisilevsky, B. S. et al. (2004). Maturation of fetal responses to music. Developmental Science, 7 (5), 550–559.
20. He, H. et al. (2021). The effect of prenatal music therapy on fetal and neonatal status: a systematic review and meta-analysis. Complementary Therapies in Medicine, 60, 102756.
21. Moon, C. (2017). Prenatal experience with the maternal voice. In: Early Vocal Contact and Preterm Infant Brain Development, еd. by Filippa, Kuhn, & Westrup; Springer.
22. Carvalho, M. E. S. et al. (2019). The impact of maternal voice on the fetus: a systematic review. Current Women’s Health Reviews, 15, 196–206.
23. Chladkova, K. & Paillereau, N. (2020). The what and when of universal perception: a review of early speech sound acquisition. Language Learning, 70 (4), 1136–1182.
24. Moon, C. et al. (2013). Language experienced in utero affects vowel perception after birth: a two-country study. Acta Paediatrica, 102 (2), 156–160.
25. Mampe, B. et al. (2009). Newborns’ cry melody is shaped by their native language. Current Biology, 19 (23), 1994–1997.
26. Filippa, M. et al. (2021). Maternal speech decreases pain scores and increases oxytocin levels in preterm infants during painful procedures. Scientific Reports, 11, 17301.
27. Chhikara,