Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Медицина » Полный справочник анализов и исследований в медицине - Михаил Ингерлейб

Полный справочник анализов и исследований в медицине - Михаил Ингерлейб

Читать онлайн Полный справочник анализов и исследований в медицине - Михаил Ингерлейб

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 64 65 66 67 68 69 70 71 72 ... 88
Перейти на страницу:

Экологическое 3D/4D УЗИ

Суть метода: трехмерное 3D УЗИ – высокотехнологичное современное исследование, позволяющее с помощью ультразвука получить детальное изображение плода в трех проекциях. С помощью 3D УЗИ возможна диагностика пороков внутриутробного развития: дефектов формирования конечностей, позвоночника, лицевых костей. Это исследование производится с помощью ультразвукового сканера, формирующего цветное изображение с эффектом 3D.

4D УЗИ – более сложная методика, позволяющая не только создать трехмерное изображения плода, но и проанализировать его в движении. По сути, 4D УЗИ – это видеосъемка плода, производимая через брюшную стенку матери с помощью ультразвуковых волн.

Трехмерное ультразвуковое сканирование – один из ДОПОЛНИТЕЛЬНЫХ МЕТОДОВ анализа здоровья будущего ребенка. В остальном – показаниях, методике проведения и прочем – не отличается от обычного УЗИ.

NB! Для женщины значительным антистрессовым фактором является подтвержденная уверенность в отсутствии у будущего младенца пороков развития, что благотворно сказывается на течении беременности.

Показания к исследованию: см. «УЗИ В I ТРИМЕСТРЕ БЕРЕМЕННОСТИ».

Проведение исследования: см. «УЗИ В I ТРИМЕСТРЕ БЕРЕМЕННОСТИ».

Противопоказания, последствия и осложнения: см. «УЗИ В I ТРИМЕСТРЕ БЕРЕМЕННОСТИ».

Подготовка к исследованию: см. «УЗИ В I ТРИМЕСТРЕ БЕРЕМЕННОСТИ».

Расшифровка результатов исследования: см. «УЗИ В I ТРИМЕСТРЕ БЕРЕМЕННОСТИ».

Часть 4

ЭКГ и другие электрофизиологические методы исследования

Электрофизиологические методы исследования в современной медицине – это методы анализа активности организма на основе регистрации биопотенциалов, изменение которых может происходить спонтанно или в ответ на внешний раздражитель.

Биопотенциал (биоэлектрический потенциал) – энергетическая характеристика взаимодействия зарядов, находящихся в исследуемой живой ткани, например, в различных областях мозга, в клетках и других структурах. Измеряется не абсолютный потенциал, а разность потенциалов между двумя точками ткани, отражающая ее биоэлектрическую активность, характер метаболических процессов.

Разность потенциалов между возбужденной и невозбужденной частями отдельных клеток всегда характеризуется тем, что потенциал возбужденной части клетки меньше потенциала невозбужденной части. Для ткани (или органа) разность потенциалов определяется совокупностью потенциалов отдельных клеток. Наиболее информативно изучение динамики изменения биопотенциалов при изучении возбудимых тканей и органов (нервной ткани, мышечной ткани, сетчатки, сосудов).

Начало истории электрофизиологических методов исследования традиционно связывают со знаменитыми опытами итальянского врача, анатома и физиолога Луиджи Гальвани. В 1791 году Гальвани опубликовал «Трактат о силах электричества при мышечном движении», в котором впервые связывались мышечные сокращения и электрические явления. Дальнейшее развитие этих идей связано с Карло Маттеуччи, который в 1830–1840 годах показал, что в мышце всегда может быть отмечен электрический ток, который течет от ее неповрежденной поверхности к поперечному разрезу.

В середине XIX века Э. Дюбуа-Реймон показал связь между электрическим током и нервным импульсом.

Дальнейшее развитие изучения электрических свойств организма человека и животных тесно связано с нейрофизиологией. В 1875 году независимо друг от друга английский хирург и физиолог Ричард Кэтон и русский физиолог В. Я. Данилевский показали, что мозг является генератором электрической активности, то есть были открыты биотоки мозга.

В 1888 году Юлий Бернштейн[34] предложил так называемый дифференциальный реотом для изучения токов действия в живых тканях, которым определил скрытый период, время нарастания и спада потенциала действия. После изобретения капиллярного электрометра такие исследования были повторены более точно Э. Ж. Мареем (1875) на сердце и А. Ф. Самойловым (1908) на скелетной мышце. Н. Е. Введенский (1884) применил телефон для прослушивания потенциалов действия. В 1902 году Ю. Бернштейн сформулировал основные положения мембранной теории возбуждения, развитые позднее английскими учеными П. Бойлом и Э. Конуэем (1941), А. Ходжкином, Б. Кацем и А. Хаксли (1949).

В начале XX в. для электрофизиологических исследований был использован струнный гальванометр. С его помощью В. Эйнтховен и Самойлов получили подробные характеристики электрических процессов в различных живых тканях. С этого времени фактически можно отсчитывать возраст клинической электрофизиологии, когда электрофизиологические исследования стали все шире и шире применяться в практической медицине.

Неискаженная регистрация любых форм биоэлектрических потенциалов стала возможной лишь с введением в практику электронных усилителей и осциллографов (30–40-е гг. XX в.). На сегодняшний день электрофизиологические методы исследования, пожалуй, представляют собой один из самых удобных и применимых подходов к изучению живых организмов. В настоящее время в исследовательской работе и клинической практике широко применяются основные электрофизиологические методы изучения деятельности:

• желудочно-кишечного тракта (электрогастроэнтерография);

• кожи (кожно-гальваническая реакция, находящая основное использование в полиграфе – «детекторе лжи»);

• кровообращения (реография, син. – импедансная плетизмография);

• мозга (электроэнцефалография);

• мышц (электромиография);

• сердца (электрокардиография);

• сетчатки (электроретинография).

Рассмотрим последовательно общие принципы наиболее распространенных электрофизиологических исследований и их использование в различных медицинских специальностях.

Глава 1

Основные электрофизиологические исследования

Реография

Реографи́я (электроплетизмография, импедансная плетизмография, импедансометрия) – метод исследования пульсовых колебаний кровенаполнения сосудов различных органов и тканей, основанный на графической регистрации колебаний его электрического сопротивления.

Метод основан на том, что при пропускании через участок тела переменного тока звуковой или сверхзвуковой частоты (16–300 кГц) роль проводника тока выполняют жидкие среды организма, прежде всего кровь в крупных сосудах; это дает возможность судить о состоянии кровообращения в определенной области тела или органе. С помощью реографии можно оценить кровообращение в органах, лежащих близко к поверхности тела: головного мозга (реоэнцефалография), печени (реогепатография), почек (реонефрография). Реография также позволяет определить изменения кровотока при физическом напряжении, при проведении так называемых нагрузочных проб.

Метод является высокочувствительным и эффективным для качественной оценки состояния кровоснабжения, важен для диагностики нарушений кровообращения органов или поражения всей сосудистой системы организма, используется для определения функции сердца.

Это исследование проводится с помощью специальных приборов – реографов. Реограф структурно состоит из генератора электрического тока, усилителя, детектора и насадки для графического отображения проведенных измерений. Реограммы в современной медицине регистрируют обычно с помощью реографов двух типов – биполярных и тетраполярных. Конструкция биполярных реографов предусматривает наложение на какой-либо участок тела двух электродов, между которыми пропускают переменный ток высокой частоты. Одновременно регистрируют изменение сопротивления на исследуемом участке тела.

В последнее время большое распространение получили тетраполярные реографы, которые позволяют более точно измерять сопротивление тканей и, соответственно, количественно оценивать объемный кровоток в тканях. При использовании тетраполярного реографа два электрода служат для пропускания электрического тока, а еще два – для регистрации электрического сопротивления тканей.

Для записи реограммы используют электроды из различных металлов и сплавов – никеля, алюминия, стали. Форма и размер электродов для реографии различны и зависят от цели исследования и исследуемого органа. Для изучения кровообращения во внутренних органах (в печени, легких) применяют прямоугольные электроды, при исследовании кровоснабжения головного мозга – круглые, при исследовании конечностей – ленточные. Для улучшения контакта между электродом и поверхностью тела пациента применяют тканевые прокладки, смоченные 20 % раствором хлорида натрия или электропроводным гелем. Перед наложением электродов кожу обезжиривают спиртом.

1 ... 64 65 66 67 68 69 70 71 72 ... 88
Перейти на страницу:
На этой странице вы можете бесплатно скачать Полный справочник анализов и исследований в медицине - Михаил Ингерлейб торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...