Десять великих идей науки. Как устроен наш мир. - Питер Эткинз
Шрифт:
Интервал:
Закладка:
Давайте сначала рассмотрим вопрос о квантово-механической интерференции между различными состояниями. При этом мы введем третью важную идею, декогеренцию. Это, возможно, наиболее тонкая часть всей аргументации, и я сделаю все, что в моих силах, чтобы держать это понятие в поле зрения. Кошка не является отдельной изолированной частицей. Она состоит из триллионов атомов, и ее полная волновая функция является очень сложным комплексом функций, описывающих положения всех этих атомов. Два состояния, вносящие вклад в систему (живая кошка × пуля в стволе и мертвая кошка × пуля в кошке), эволюционируют во времени, в соответствии с уравнением Шредингера, весьма по-разному и крайне быстро. В течение мельчайшей доли секунды волновая функция мертвой кошки становится совершенно отличной от волновой функции живой кошки, и интерференция между волновыми функциями живой и мертвой кошек полностью исчезает. В результате система не показывает никаких эффектов квантово-механической интерференции, и у нас есть либо мертвая кошка, либо живая кошка, а не потешная суперпозиция двух состояний.
Но какое же из состояний мы обнаружим? Умалчивает ли квантовая механика о предсказании результата нашего эксперимента? Потеря причинности и детерминизма, лесов и фундамента науки и понимания, кажется многим слишком дорогой ценой, особенно когда аргументы являются скорее чьим-то мнением и философскими предпочтениями, чем аргументами математическими или обусловленными экспериментом. Одно из возможных решений вырастает из предположения Эйнштейна, что квантовая механика неполна, в том смысле, что существуют скрытые параметры или характеристики частиц (включая кошек), которые от нас скрыты, но тем не менее влияют на их поведение. Так, скрытые параметры могут предписать частице вдруг возникнуть в некотором месте, в то время как квантовая теория может предсказать только вероятность ее появления там и не способна уловить скрытые параметры, контролирующие действительный результат. Тогда можно было бы предполагать, что оперирование этими скрытыми параметрами и получение точных предсказаний результатов наблюдения, а не просто их вероятности, является задачей еще не открытой более глубокой теории, лежащей за квантовой механикой.
Подтверждение или опровержение существования непознаваемых пока скрытых параметров может казаться делом недоказательных метафизических дебатов в большей степени, чем научного решения. Однако Джон Белл (1928-90) в выдающейся, простой и основополагающей статье, опубликованной в 1964 г., продемонстрировал, что существует экспериментальное различие между квантовой механикой и ее модификациями, содержащими скрытые параметры, и поэтому вопрос может быть решен раз и навсегда. Более точно, Белл показал, что предсказания квантовой механики отличаются от предсказаний теорий с локальными скрытыми параметрами. Локальные скрытые параметры вполне соответствуют своему названию: локальные параметры можно отождествить с текущей локализацией частицы, что кажется разумным требованием для того, чтобы они обладали свойством локальности. Теорема Белла не касается нелокальных скрытых параметров, когда поведение частицы здесь зависит от характеристик, помещенных где-то в другом месте; это может показаться странной возможностью, но квантовая механика учит нас, что нельзя, сидя в кресле, с легкостью отметать странности. Теорема Белла является теоретическим, хотя и сильным результатом, но она была проверена в серии экспериментов возрастающей изощренности. В каждом случае результат соответствовал квантовой механике и не соответствовал любого рода теории с локальными скрытыми параметрами.
Итак, если квантовая механика действительно полна, по крайней мере в терминах локальных свойств, должны ли мы действительно отказаться от причинности? Был предложен ряд альтернатив. Одним из наиболее радикальных — и поэтому чрезвычайно притягательных если не для ученых, то для журналистов — предложений была неудачно названная интерпретация «множественных миров», которую в несколько темной форме предложил непрерывно куривший, разъезжавший с гудками на «кадиллаке» мультимиллионер и аналитик ядерных исследований Хью Эверетт (1930-82) в 1957 г. в своей докторской диссертации. Центральной, как бы наивной и с виду безвредной идеей в предложении Эверетта, была идея, которую презрел Бор: идея о том, что уравнение Шредингера универсально справедливо и контролирует эволюцию волновой функции, даже когда частица взаимодействует с измерительным прибором. Множество возвышенных замков было построено на фундаменте этой идеи и сделанных Эвереттом замечаний по поводу ее очевидных следствий.
В замке, захватившем воображение публики, все вероятности, выражаемые волновой функцией, действительно реализуются (так, что кошка действительно и жива и мертва), но когда производится измерение и состояние обнаруживается, эта реализация расщепляет Вселенную, и из бесконечного числа параллельных Вселенных (одни с мертвой кошкой, другие с живой) выбирается только одна. По существу, взаимодействие измерительного прибора с мозгом наблюдателя выбирает ответвление, по которому Вселенная будет двигаться. Вселенную расщепляет каждое наблюдение, так что огромное и растущее множество параллельных миров в разных мозгах следует различными путями. Трудно представить себе более расточительную интерпретацию, но поскольку неприязнь не является инструментом научного отбора, некоторые принимают эту интерпретацию всерьез. В отличие от теоремы Белла, по-видимому, не существует способа проверить, действительно ли ум вовлекается в акт наблюдения, если не считать одного, однажды предложенного эксперимента. Поскольку этот эксперимент требует, чтобы наблюдатель покончил с собой, до его осуществления дело пока не дошло.
Мы (за исключением закоренелых копенгагенцев) должны отличать безупречную, по-видимому, идею Эверетта о том, что уравнение Шредингера приложимо к макроскопическим объектам, от интерпретаций, построенных на этой точке зрения, так что вы должны быть очень осторожны, определяя, какой аспект интерпретации «множественных миров» вы имеете в виду, когда просите кого-нибудь сообщить, является ли он многомирцем. Я думаю, честно будет признать, что большинство физиков сегодня принимает «постную» версию интерпретации «множественных миров», гласящую лишь об универсальности уравнения Шредингера, но некоторые присоединяются и к более субъективным оттенкам, которые добавились к этой интерпретации. «Универсально шредингеровский взгляд» противоречит копенгагенской интерпретации, которая утверждает неприятную мысль, что квантовая механика в чем-то неверна, когда ее прилагают к макроскопическим ансамблям атомов, которые мы называем измерительными инструментами. Эта позиция, по-видимому, является чрезмерно капитулянтской, и трудно понять, как квантовая механика может постепенно слепнуть или даже резко переключаться на другую теорию, когда число атомов, входящих в систему, возрастает. Определенно верно, что макроскопические объекты в очень хорошем приближении ведут себя в соответствии с классической физикой: но мы знаем, что это поведение является просто проявлением квантовой механики в приложении к большому числу атомов.
Давайте задержимся на «универсально шредингеровском взгляде» и посмотрим на его проблемы и следствия. Мы остаемся с возможностью того, что простейший сценарий адекватен: квантовая механика полна, локальные скрытые параметры отсутствуют, и она с исчерпывающей полнотой описывает тела, состоящие из любого числа частиц. Коллапс волновой функции, таинственная компонента копенгагенской интерпретации, тоже оказывается за бортом, так как универсальное уравнение Шредингера должно будет каким-то образом учитывать все изменения, которым подвергается волновая функция, включая видимый коллапс, происходящий при измерении. Как тогда, при этих условиях, сможем мы сохранить причинность и детерминизм в рамках квантовой механики и, в частности, в процессе измерения?
Успех декогеренции в устранении квантово-механической интерференции между живой и мертвой версиями кошки заставляет предположить, что и здесь декогеренция является тем рыцарем в белых доспехах, который нам необходим. Живая или мертвая кошка есть сложное показание стрелки. Раз это так, давайте упростим проблему, вообразив примитивный измерительный прибор, состоящий из мячика, покоящегося на вершине бугра между двумя ямами. Легчайший толчок отправит мячик в одну из двух ям, и наблюдая, в которой из ям мячик приземлился, мы можем определить, получил ли мячик легкий толчок налево или направо (рис. 7.13). Этот прибор является усилителем толчков, и это сущностная характеристика всех измерительных приборов: они все являются усилителями толчков. Если нам хочется, мы можем приклеить в левой яме этикетку «мертвая кошка», а в правой «живая кошка». Кошка является тогда усилителем положения пули: я оставляю для вас задачу перевода с языка шредингеровской кошки-индикатора на язык стилизованного упрощения «мячик на бугре».