Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Математика » Десять великих идей науки. Как устроен наш мир. - Питер Эткинз

Десять великих идей науки. Как устроен наш мир. - Питер Эткинз

Читать онлайн Десять великих идей науки. Как устроен наш мир. - Питер Эткинз

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 61 62 63 64 65 66 67 68 69 ... 107
Перейти на страницу:

Мы сосредоточимся на одном аспекте копенгагенской интерпретации, на акте измерения. Измерение является решающей составляющей при рассмотрении интерпретации квантовой механики не только из-за его позитивистского характера, и того, что оно породило больше статей, замешательства и огорчений, чем любой другой аспект этой теории. Оно является решающим для копенгагенской интерпретации потому, что эта интерпретация настаивает на роли инструментов измерения в наших попытках раздразнить реальность. Но какую бы интерпретацию ни давать квантовой механике, приходит момент, когда мы должны сопоставить ее предсказания с наблюдениями, поэтому понимание границы, разделяющей предсказание и наблюдение, имеет решающую важность и значимость.

Здесь мы подошли, возможно, к наиболее трудному, но центральному моменту интерпретации квантовой механики. Я попытался упростить предмет насколько возможно, не теряя существа обсуждения. Я весьма чувствителен к изяществу аргументации и сделал все, что было в моих силах, чтобы она была, насколько возможно, прозрачной. Если дела пойдут слишком туго, без колебаний прыгайте к следующей главе, ведь все, что следует дальше, не зависит от обсуждаемого здесь.

В самом широком смысле акт измерения дает изображение квантово-механического свойства на выходе макроскопического прибора. Этот выход обычно называют «показанием стрелки», но термин можно использовать и для обозначения выходных данных любой крупномасштабной системы, таких как число, появившееся не экране монитора, значок, напечатанный на бумаге, щелчок, услышанный ухом или даже обнаружение в ящике мертвой кошки. Копенгагенская интерпретация настаивает на том, что измерительный инструмент действует классически, поскольку он должен отображать квантовый мир в терминах величин, доступных восприятию таких великанов, как мы. Хотя копенгагенская интерпретация доминировала много лет, не в последнюю очередь за счет влияния Бора, она ни в коей мере не является повсеместно принятой. Ахиллесовой пятой ее мясистой подошвы является именно эта попытка настоять на особом статусе измерительного прибора. Альтернативным является утверждение, что измерительные приборы также действуют на основе квантовых принципов; мы исследуем этот вариант позднее.

Предположим, у нас есть детектор, который включает красный свет, если электрона нет, и зеленый, если электрон присутствует. Электрон описывается волновой функцией, которая распределена в пространстве и, как мы видели, будучи возведена в квадрат, сообщает нам в каждой точке пространства вероятность того, что электрон будет там обнаружен. Если мы поместим наш детектор в область, где мы ожидали найти электрон, мы с большей вероятностью получим зеленый свет там, где волновая функция больше, чем там, где она меньше, и квадрат волновой функции будет сообщать нам вероятность (например, один раз из десяти) того, что мы получим зеленый свет.

Если, когда мы вставляем детектор, загорается зеленый свет, то мы с определенностью знаем, что частица находится в этом положении. Непосредственно перед регистрацией этого события мы знаем только вероятность того, что электрон находится там. Поэтому, в самом реальном смысле, волновая функция сжалась от формы, размазанной по пространству, до острого пика, расположенного в месте нахождения детектора. Изменение волновой функции в результате измерения с помощью классического прибора называется коллапсом волновой функции. Когда бы мы в качестве наблюдателей ни осуществили наблюдение, волновая функция коллапсирует к определенному положению, соответствующему показанию стрелки (в данном случае, переключателя, контролирующего свет), которое мы наблюдаем. Это вмешательство в систему, по-видимому, вызывающее коллапс волновой функции в отдельную точку, является центральной концепцией и в то же время трудностью копенгагенской интерпретации, а также центральной проблемой, касающейся связей между вычислением и наблюдением. Оно также является источником той точки зрения, что квантовая механика устраняет детерминизм, причинную связь между настоящим и будущим, поскольку в квантовой механике, как утверждается, нет никакого способа предсказать до проведения измерения, коллапсирует или нет волновая функция в некоторую частную точку, а возможно лишь вычисление вероятности того, что это произойдет.

Здесь я должен ввести три технических детали квантовой механики, так как они являются центральными в проблеме измерений и в ее решении. Я сделаю это с помощью изрядно заезженной проблемы кошки Шредингера. В этой квантовой метафоре Шредингер вообразил кошку, заключенную в непрозрачный ящик вместе с прибором, способным испускать яд, запускаемым радиоактивным распадом. Радиоактивный распад случаен, и на данном интервале времени распад произойдет или не произойдет с равной вероятностью. Согласно квантовой механике это соответствует тому, что состояние кошки представляет собой смесь в равных долях ее живого состояния и мертвого состояния (рис. 7.12), и мы можем записать:[33]

Состояние кошки = живое состояние + мертвое состояние.

Эта сумма является аналогом суперпозиции волновых функций, которую мы использовали при построении волнового пакета, с единственной разницей, что вместо складываемых состояний импульса здесь фигурируют состояния кошки. Построение настоящих волновых функций было бы гораздо более сложным, но нам этого делать не придется.

Рис. 7.12. Кошка Шредингера. Живая кошка заперта в непрозрачном ящике вместе с гнусным прибором, который убивает или не убивает ее. До того как мы открыли ящик, была ли кошка суперпозицией живой и мертвой кошек? Когда волновая функция коллапсирует в то или иное состояние?

Описание состояний как суперпозиций является корнем всех бед в квантовой механике, ибо, в частности, кажется, что нет способа предсказать, получим ли мы при следующем наблюдении кошки результат «она жива!» или «она мертва!». Как только мы открываем ящик, мы немедленно узнаем, жива кошка или мертва, поскольку, в некотором смысле, волновая функция кошки коллапсирует к одной или другой из волновых функций, соответствующих этим состояниям. Но в какой момент коллапсирует волновая функция кошки? Перед тем как мы открыли ящик? В момент открытия ящика? На долю секунды позже, когда наш ум регистрирует, жива кошка или мертва? Когда кошка подумает, что она умерла? Квантовая механика лишь задает правила, по которым могут быть предсказаны вероятности обнаружения этих состояний. Кажется, что из физики вытек весь детерминизм, кажется, что квантовая механика капитулировала и отдала себя в руки Бога. Этим был глубоко обеспокоен Эйнштейн, что заставило его назойливо часто возражать «Бог не играет в кости». Бор отметал этот критицизм, замечая, что причинность является, так или иначе, классическим понятием и дополнительна (в несколько смутном и неясно определенном смысле) к пространственному описанию положений частицы. То есть, согласно Бору, либо вы выбираете классическую физику и наслаждаетесь опьяняющим превосходством причинности, либо выбираете квантовую механику, но ценой, которую вы платите за это, будет причинность.

Мы можем ввести второе важное замечание, представив себе более агрессивный вариант метафоры Шредингера, в котором кошка бывает не отравлена, а застрелена. Когда в кошку производится выстрел в звуконепроницаемом ящике, состоянием прибора сначала является кошка × пуля в стволе. Ружье заставляет стрелять тот же случайный прибор, что и прежде, поэтому пуля с равными вероятностями находится в полете или еще в стволе. На этой стадии состояние системы имеет вид:

Состояние системы = кошка × пуля в стволе + кошка × пуля в полете.

Сразу после этого, когда пуля попадает в кошку (а это неизбежно, если пуля вылетела), создавая мертвую кошку, или остается в стволе, сохраняя кошку в живых, система принимает вид:

Состояние системы = живая кошка × пуля в стволе + мертвая кошка × пуля в кошке.

Это пример смешанного состояния, в котором состояния кошки и пули спутаны и переплетены. Если это истинное состояние системы, то мы можем ожидать, что существуют некие причудливые эффекты интерференции между двумя состояниями системы. Что же на свете может быть интерпретацией такого описания? Что может означать результат интерференции между волновыми функциями мертвой и живой версий кошки и различных положений пули?

Давайте сначала рассмотрим вопрос о квантово-механической интерференции между различными состояниями. При этом мы введем третью важную идею, декогеренцию. Это, возможно, наиболее тонкая часть всей аргументации, и я сделаю все, что в моих силах, чтобы держать это понятие в поле зрения. Кошка не является отдельной изолированной частицей. Она состоит из триллионов атомов, и ее полная волновая функция является очень сложным комплексом функций, описывающих положения всех этих атомов. Два состояния, вносящие вклад в систему (живая кошка × пуля в стволе и мертвая кошка × пуля в кошке), эволюционируют во времени, в соответствии с уравнением Шредингера, весьма по-разному и крайне быстро. В течение мельчайшей доли секунды волновая функция мертвой кошки становится совершенно отличной от волновой функции живой кошки, и интерференция между волновыми функциями живой и мертвой кошек полностью исчезает. В результате система не показывает никаких эффектов квантово-механической интерференции, и у нас есть либо мертвая кошка, либо живая кошка, а не потешная суперпозиция двух состояний.

1 ... 61 62 63 64 65 66 67 68 69 ... 107
Перейти на страницу:
На этой странице вы можете бесплатно скачать Десять великих идей науки. Как устроен наш мир. - Питер Эткинз торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...