Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Математика » Математика. Утрата определенности. - Морис Клайн

Математика. Утрата определенности. - Морис Клайн

Читать онлайн Математика. Утрата определенности. - Морис Клайн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 47 48 49 50 51 52 53 54 55 ... 140
Перейти на страницу:

При x = 1 ряд (8), представляющий функцию 1/(1 + x),

1/(1 + x) = 1 − x + x2 − х3 + x4 − …, (8)

переходит в ряд

1 − 1 + 1 − 1 + 1 − ….

Вопрос о том, чему равна сумма последнего ряда, порождал бесконечные споры. Если этот ряд записать в виде

(1 − 1) + (1 − 1) + (1 − 1) + …,

то становится ясно, что его сумма должна быть равна нулю. Но если тот же ряд записать как

1 − (1 − 1) − (1 − 1) −  …,

то столь же ясно, что сумма ряда должна равняться единице. Однако ясно также и то, что если сумму ряда обозначить через S, то

S = 1 − (1 − 1 + 1 − 1 + …),

или

S = 1 − S,

откуда S = 1/2. Последний результат подкрепляется еще одним доводом. Интересующий нас ряд можно рассматривать как геометрическую прогрессию со знаменателем −1, а сумма бесконечной геометрической прогрессии с первым членом a и знаменателем r равна a/(1r). В нашем случае сумма равна 1/[1 − (−1)], или 1/2.

Гвидо Гранди (1671-1742) в своем небольшом сочинении «Квадратура окружностей и гипербол» (Quadratura circuit et hyperbolae, 1703) другим методом получил сумму, равную 1/2. Полагая в (8) x = 1, он нашел:

1/2 = 1 − 1 + 1 − 1 + 1 − ….

Тем самым Гранди утверждал, что сумма ряда равна 1/2. Но одновременно он заявлял, что сумма того же ряда равна 0. По мнению Гранди, полученное им «равенство» 0 = 1/2 доказывало, что мир мог быть создан из ничего.

В письме к Христиану Вольфу, опубликованному в Acta eruditorum за 1713 г., Лейбниц рассмотрел тот же ряд. Он согласился с выводом Гранди, но считал, что к подобному заключению можно было бы прийти, не обращаясь к исходной функции. Взяв первый член, сумму первых двух, трех, четырех и т.д. членов, Лейбниц получил 1, 0, 1, 0, …. Следовательно, счел он, 0 и 1 равновероятны и их среднее арифметическое, равное 1/2, — наиболее вероятное значение суммы ряда. Якоб, Иоганн и Даниил Бернулли, а также Лагранж согласились с доводами Лейбница. Признав, что его доводы носят не столько математический, сколько метафизический характер, Лейбниц сослался на распространенность такого рода аргументации: в математике, по его словам, метафизических истин гораздо больше, чем обычно думают.

В одном из писем, датированных 1745 г., и в работе 1754-1755 гг. Эйлер предпринял попытку решить проблему суммирования рядов. Ряд, сумма которого по мере увеличения числа членов все меньше отличается от некоторого фиксированного числа, называется сходящимся, а само это число — суммой ряда. По Эйлеру, ряд сходится, если члены его монотонно убывают. Ряд, члены которого не убывают и могут даже возрастать, расходится, а так как ряды такого типа порождаются хорошо известными явными функциями, то Эйлер предложил считать суммой ряда значение функции (при соответствующем значении x).

Теория Эйлера породила дополнительные проблемы. Взяв разложение

1/(1 + x)2 = (1 + x)−2 = 1 2x + 3x2 4x3 + …,

Эйлер получил при x = −1

∞ = 1 + 2 + 3 + 4 + ….

Результат, казалось бы, вполне осмысленный. Но затем Эйлер рассмотрел ряд для функции 1/(1x):

1/(1 − x) = 1 + x + x2 + x3 + …

и получил при x = 2

1 = 1 + 2 + 4 + 8 + ….

Так как сумма ряда, стоящего в правой части этого ряда, должна превышать сумму предыдущего ряда, Эйлер заключил, что 1 больше, чем бесконечность. Некоторые из современников Эйлера утверждали даже, что отрицательные числа, которые больше бесконечности, отличаются от отрицательных чисел, меньших нуля. С этим Эйлер не согласился: по его мнению, бесконечность разделяет положительные и отрицательные числа так же, как нуль.

Взгляды Эйлера на сходимость и расходимость рядов были ошибочными. В его время уже были известны ряды с монотонно убывающими членами, тем не менее не имеющие суммы по Эйлеру, — да и ему самому приходилось работать с рядами, которые не были порождены явными функциями. «Теория» бесконечных рядов Эйлера была явно неполной. Кроме того, Николай Бернулли (1687-1759) в ныне утерянном письме (1743), по-видимому, обратил внимание Эйлера на то, что различные аналитические выражения могут порождать один и тот же ряд, и если следовать предложенному Эйлером определению суммы ряда, то этому ряду надлежит приписать различные суммы. В письме Гольдбаху (1745) Эйлер ответил, что Бернулли не привел никаких примеров в подтверждение своих слов и что он, видимо, сам не верит в то, что два истинно различных алгебраических выражения могут порождать один и тот же ряд. Однако Жан Шарль Калле (1744-1799) предложил пример ряда, порождаемого двумя различными функциями. Лагранж пытался опровергнуть пример Калле, но, как выяснилось впоследствии, аргументы Лагранжа были ошибочными.

Подход Эйлера к бесконечным рядам был неадекватен и по другим причинам. Ряды можно дифференцировать и интегрировать, и то, что дифференцирование и интегрирование ряда приводит соответственно к производной и антипроизводной функции, породившей ряд, требует особого обоснования. Несмотря на это, Эйлер провозгласил: «Всякий раз, когда бесконечный ряд получается при разложении некоторого замкнутого выражения [формулы для функции], его допустимо использовать в математических операциях как эквивалент этого выражения даже при тех значениях переменной, при которых ряд расходится». Мы можем обратить себе на пользу расходящиеся ряды, утверждал Эйлер, и защитить их применение от всяких возражений.

Другие математики XVIII в. также сознавали необходимость отличать ряды, называемые ныне сходящимися, от рядов, которые мы называем расходящимися, хотя и не знали, где именно проходит различие между теми и другими. Трудность была вызвана новизной понятия: подобно первопроходцам, математикам XVIII в. приходилось прорубать себе дорогу через девственный лес. Первоначальная идея Ньютона, принятая Лейбницем, Эйлером и Лагранжем (ряд не более чем «длинный» многочлен и, следовательно, относится к области алгебры), не могла служить основой для обоснования операций, производимых с рядами.

В XVIII в. господствовал формальный подход к бесконечным рядам. Математики того времени отменили все ограничения на операции над рядами, например перестали заботиться о сходимости ряда. Использование рядов давало полезные результаты — и математики довольствовались практическим подтверждением правильности применяемых ими методов. Они далеко вышли за пределы того, что могли бы обосновать, но в целом обращались с расходящимися рядами довольно осторожно.

Хотя арифметика и алгебра были обоснованы ничуть не лучше математического анализа, математики сосредоточили свои усилия на последнем, надеясь изгнать из дифференциального и интегрального исчисления любую неоднозначность. Столь явное предпочтение математическому анализу объяснялось, несомненно, тем, что к началу XVIII в. различные типы чисел стали привычными и казались вполне естественными, в то время как понятия математического анализа по-прежнему оставались странными и даже загадочными, а потому менее приемлемыми. Кроме того, применение чисел не приводило к противоречиям, тогда как применение дифференциального и интегрального исчисления, бесконечных рядов и других разделов математического анализа рождало противоречия.

Ньютоновский подход к анализу потенциально легче поддавался обоснованию, чем подход Лейбница, хотя методология Лейбница отличалась большей гибкостью и была более удобной для приложений. Английские математики все еще надеялись обосновать оба подхода, связав их с евклидовой геометрией. К тому же они путали ньютоновские моменты (приращения неделимых, нынешние дифференциалы) и его непрерывные переменные. Математики, жившие в континентальной Европе, придерживались подхода Лейбница и пытались обосновать введенное им понятие дифференциала (бесконечно малой). Книги, посвященные объяснению и обоснованию подходов Ньютона и Лейбница, слишком многочисленны и противоречивы, чтобы подробно говорить о них.{78}

Пока одни математики предпринимали усилия, чтобы обосновать математический анализ, другие подвергали сомнению его правильность. Самым сильным нападкам математический анализ подвергся со стороны философа епископа Джорджа Беркли (1685-1753), опасавшегося, что вдохновляемая математикой философия механицизма и детерминизма создает растущую угрозу религии. В 1734 г. Беркли опубликовал сочинение под названием «Аналитик, или Рассуждение, адресованное одному неверующему математику [таковым он называл Эдмонда Галлея], в котором исследуется, являются ли предмет, принципы и заключения современного анализа более отчетливо познаваемыми и с большей очевидностью выводимыми, чем религиозные таинства и положения веры» [21]. «Вынь бревно из глаза своего, и ты узришь соринку в глазу брата своего». Беркли с полным основанием сетовал на загадочность и непонятность того, чем занимаются математики, поскольку те никак не обосновывали и не объясняли своих действий. Беркли подверг критике многие из рассуждений Ньютона, и в частности указал на то, что в «Рассуждении о квадратуре кривых» Ньютон (обозначавший приращение через x, а не h, как это сделали мы) выполнил несколько алгебраических операций, после чего отбросил члены, содержавшие h, мотивируя это тем, будто приращение h теперь обратилось в нуль. [Ср. равенства (3) и (4).] Поступая так, продолжал Беркли, Ньютон допустил вопиющее нарушение закона противоречия. Такого рода рассуждения в теологии были бы признаны неприемлемыми. Беркли утверждал, что первые флюксии (первые производные), по-видимому, выходят за рамки человеческого разумения, поскольку находятся за пределами конечного.

1 ... 47 48 49 50 51 52 53 54 55 ... 140
Перейти на страницу:
На этой странице вы можете бесплатно скачать Математика. Утрата определенности. - Морис Клайн торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...