Механика от античности до наших дней - Ашот Григорьян
Шрифт:
Интервал:
Закладка:
В двух следующих главах Эйлер решает задачу для случаев трех или двух равных главных моментов инерции. В случае попарно неравных моментов при отсутствии внешних сил он выражает закон движения через дуги конических сечений, т. е. через эллиптические интегралы, и рассматривает условия, при которых дело сводится к элементарным интегралам. Мы не будем останавливаться на дальнейшей истории этой основополагающей в теории гироскопа задачи, ставшей предметом изысканий многих ученых. Скажем лишь, что первый шаг вперед сделал вскоре Лагранж, давший решение для случая, когда два главных момента инерции равны, а центр тяжести тела лежит на оси третьего момента (в дифференциальные уравнения входят тогда дополнительные члены, зависящие от координат центра тяжести). Новые глубокие исследования проведены были лишь через сто лет С.В. Ковалевской.
В последних главах работы Эйлера по теории движений твердого тела содержатся некоторые приложения общей теории к вращению небесных тел, в частности к явлениям либрации и нутации, к движению волчка на горизонтальной плоскости и другим вопросам, а в обширном приложении рассмотрен еще вопрос о движении с трением.
Влияние трудов Эйлера по механике точки и твердого тела на все последующее развитие этой науки и на ее преподавание было огромным. Как и в области математики, он был здесь, по выражению Лапласа, «общим учителем всех нас».
Особенно велики заслуги Эйлера в развитии науки в России. «Вместе с Петром I и Ломоносовым, — писал академик С.И. Вавилов, — Эйлер стал добрым гением нашей Академии, определившим ее славу, ее крепость, ее продуктивность».
РАБОТЫ БЕРНУЛЛИ И ЭЙЛЕРА ПО МЕХАНИКЕ ЖИДКОСТЕЙ И ГАЗОВ
Проблема взаимодействия между жидкостью и частично или полностью погруженным в нее телом возникла из нужд практики в древности. Еще Архимед открыл закон, выражающий подъемную силу, которая поддерживает плавающее тело, и первый исследовал проблему устойчивости плавающих тел для некоторых фигур вращения. В XVI—XVII вв. строительство каналов, плотин, шлюзов, фонтанов, развитие судостроения и мореплавания с гораздо большей силой, чем прежде, поставило перед инженерами и учеными передовых европейских стран разнообразные задачи гидромеханики. В исследовании давления жидкости на дно и стенки сосудов значительные успехи достигнуты были голландским инженером и математиком С. Стевином (1548—1620) и независимо от него французским ученым Б. Паскалем (1623—1662), который пошел далее, открыв, в частности, принцип работы гидравлических прессов. Галилей, используя принцип возможных перемещений, вновь подверг изучению вопрос о плавающих телах.
Параллельно экспериментально и теоретически разрабатывалось учение об атмосферном давлении. Здесь важные результаты были получены Торричелли и Паскалем. Отто фон Герике (1602—1686) провел первые опыты с изобретенным им воздушным насосом, который значительно усовершенствовал английский физик Р. Бойль (1627— 1691). В 1662 г. Бойль же открыл закон обратной пропорциональности между силой давления и объемом сжигаемого воздуха (при постоянной температуре), закон, который был самостоятельно получен п убедительно подтвержден в 167 6 г. французским физиком Э. Мариоттом (1620—1684). В сравнении с этими достижениями гидро- и аэростатики успехи в области динамики жидких сред были незначительны. Б. Кастелли (1577—1644), учеником которого, как и Галилея, был Торричелли, в 1628 г. опубликовал сочинение о движении воды в реках и каналах. Он установил, что скорость течения обратно пропорциональна площади соответствующего поперечного сечения, но допустил ошибку, приняв, что скорость истечения жидкости из бокового отверстия сосуда пропорциональна высоте ее уровня. Правильный закон истечения жидкости вывел как отмечалось ранее, Торричелли. Ньютон в «Математических началах» приступил к анализу внутреннего трения в движущейся жидкости, введя понятие о вязкости. Но все это были только первые подступы к созданию гидродинамики. Энгельс в «Диалектике природы» писал, что механика жидких и газообразных тел была в более значительной степени разработана лишь в середине XVIII в. Главная заслуга в этом деле принадлежит Д. Бернулли и Л. Эйлеру.
Даниил Бернулли, второй сын Иоганна Бернулли, родился 29 января 1700 г. в Гренингене (Голландия), где работал в то время его отец. Вместе с родителями мальчик в 1705 г. переехал в Базель и здесь окончил в 1713 г. гимназию, а в 1716 г. — университет, получив звание магистра философии. Отец предназначал Д. Бернулли для работы в торговле, но юношу неудержимо интересовали науки. Он принялся изучать медицину. Однако, как писал Д. Бернулли в автобиографии, «пример членов его семьи, а именно его отца и старшего брата Николая, а также наклонности его собственной души влекли его к математическим наукам и к изучению природы. Он почти целиком отдался этим знаниям»{158}.
В 1724 г. его избрали членом Болонской академии наук. Генуя также собиралась основать академию, и с Даниилом Бернулли вступили в переговоры, предлагая ему возглавить это ученое общество. Пока он колебался, пришло приглашение на службу в Петербургскую академию наук, и молодой ученый выбрал Петероург. В русскую столицу он приехал в октябре 1725 г.
Д. Бернулли проработал в России почти восемь лет, заполненных интенсивными научными занятиями по математике и механике. В это время был подготовлен и первый вариант его «Гидродинамики». Летом 1733 г. он возвратился в Базель.
Тесную связь с Петербургской академией Д. Бернулли поддерживал до конца жизни. Перед отъездом ему было присвоено звание почетного (иностранного) члена Академии с ежегодной пенсией в 200 руб. В записках Петербургской академии наук напечатана большая часть работ Бернулли: 50 из 75. Все 20 работ, написанных Бернулли в последние годы жизни, тоже вышли в изданиях Петербургской академии наук. Помимо того, Д. Бернулли поддерживал с академией оживленную научную переписку, более всего с Л. Эйлером. Эта переписка имеет выдающийся научный и исторический интерес.
Труды Д. Бернулли принесли ему очень широкую известность. Он был избран членом академий (помимо ранее названных) в Париже, Берлине, Лондоне. Десять раз его сочинения получали премии на конкурсах Парижской академии. Скончался Д. Бернулли в Базеле 17 марта 1782 г.
Первые важные открытия Д. Бернулли относились к математике. И, впоследствии он не раз обращался к различным математическим вопросам. Так, в третьем томе «Gommentarii» за 1728 г. он приложил рекуррентные ряды к приближенному решению численных алгебраических уравнений; в пятом томе за 1730—1731 гг. он распространил свой прием на некоторые классы трансцендентных уравнений. Большую важность имеют его исследования по теории вероятностей, к решению задач которой он применил исчисления бесконечно малых, и по статистике. В отличие от Эйлера, который был прежде всего математиком, Д. Бернулли был в первую очередь физиком и механиком, а математика являлась для него только одним из важных средств для раскрытия законов природы. «Даниил Бернулли, — пишет академик В.И. Смирнов, — был по существу не математиком, а естествоиспытателем в широком смысле этого слова. Математическим аппаратом он пользовался в очень скромном масштабе. Математика в его работах — очень простая. Поражает его необыкновенная интуиция при рассмотрении различных задач механики и физики. Это та «первооснова», на которой он строил свои работы. Характерным является и тот факт, что он обычно сопровождает свои теоретические работы экспериментом. Иногда он любил и порисоваться своим пренебрежительным отношением к формальному математическому аппарату»{159}. Увлечение более абстрактными вопросами математики ему было чуждо, и, например, по поводу работ Эйлера по теории чисел он в письме к Н. Фуссу от 18 марта 1778 г. высказывался так: «…Не находите ли Вы, что простым числам уделяется слишком большая честь тем, что на них истрачено столько богатств ума; не есть ли это дань утонченному вкусу нашего века?»{160}
ДАНИИЛ БЕРНУЛЛИ (1700-1782)Швейцарский физик, математик и механик, действительный член Петербургской академии наук. В 1738 г. вышел в свет его классический труд «Гидродинамика». Д. Бернулли вывел основное уравнение стационарного движения идеальной жидкости, носящее его имя, разрабатывал кинетические представления о газах
С самого начала своей деятельности в Петербургской академии наук Д. Бернулли приступил к работе над различными вопросами механики. Результаты этой работы отражены уже в первых томах «Commentarii»: в первом томе появляется статья «Исследование принципов механики и геометрические доказательства относительно сложения и разложения сил; во втором томе — «Новая теория движения текущих по каким-либо каналам вод», «Геометрические доказательства о взаимных связях между центром сил, центром колебания и центром тяжести» и «Рассуждение о действии жидкостей на твердые тела и о движении твердых тел в жидкостях»; в третьем томе — продолжение последней статьи и т. д. Но главным делом его явилась подготовка обширной монографии по гидродинамике, к которой он приступил в конце 1728 или начале 1729 г. К 1733 г. он написал черновой вариант текста, который оставил в Академии, покидая Петербург[29]. В Базеле Бернулли, текст переработал и дополнил. Книга вышла в Страсбурге в 1738 г. На титульном листе — в переводе с латинского на русский — стоит: «Даниила Бернулли, сына Иоганна, проф. мед. в Базеле, ранее ордин. проф. высшей математики, ныне члена и почетн. проф. имп. Петербургской академии наук Гидродинамика, или Записки о силах и движениях жидкостей. Академический труд, составленный автором в период пребывания его в Петербурге». За это сочинение автор получил от издателя 100 талеров гонорара и 30 бесплатных экземпляров, а от человечества — бессмертную славу.