Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Математика » Математика. Утрата определенности. - Морис Клайн

Математика. Утрата определенности. - Морис Клайн

Читать онлайн Математика. Утрата определенности. - Морис Клайн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 40 41 42 43 44 45 46 47 48 ... 140
Перейти на страницу:

Общее отношение математиков к узакониванию научного статуса тех разновидностей чисел (иррациональных, отрицательных и комплексных), которые доставляли им столько хлопот, отчетливо выразил Д'Аламбер в своей статье об отрицательных числах, написанной для «Энциклопедии». В целом эта статья была написана недостаточно ясно и завершалась следующим признанием: «Алгебраические правила действий над отрицательными числами ныне общеприняты, и все признают их точными независимо от того, что бы мы ни думали о природе этих чисел».

За многие века, на протяжении которых европейские математики упорно пытались понять природу различных типов чисел, на передний план выступила еще одна фундаментальная логическая задача — задача обоснования алгебры. Первой работой, существенно упорядочившей новые результаты, было «Великое искусство» Дж. Кардано. В этой книге Кардано показал, как решать кубические уравнения (например, x3 + 3x2 + 6x = 10) и уравнения четвертой степени (типа х4 + 3x3 + 6x2 + 7x + 5 = 0). Примерно за сто лет арсенал алгебры пополнился многими важными результатами, часть которых была известна еще арабским математикам: методом математической индукции, биномиальной теоремой и приближенными методами вычисления корней уравнений разных степеней. Основной вклад в сокровищницу алгебры внесли Виет, Гарриот, Жирар, Ферма, Декарт и Ньютон. Но все эти новые результаты фактически не были доказаны. Правда, Кардано, а позднее Бомбелли и Виет привели в обоснование своих методов решения кубических уравнений и уравнений четвертой степени кое-какие геометрические соображения, но, поскольку эти математики игнорировали отрицательные и комплексные корни, приведенные ими соображения заведомо не могли рассматриваться как доказательства. Кроме того, появление уравнений высших степеней, например четвертой и пятой, означало, что геометрия, ограниченная в те времена трехмерным пространством, не могла служить основой доказательств. Результаты, полученные другими авторами, чаще всего оказывались всего лишь более или менее удачными догадками, подсказанными конкретными примерами.

Шаг в правильном направлении сделал Виет. Со времен Древнего Египта и Вавилона и вплоть до появления работы Виета математики решали уравнения первой степени, квадратные, кубические и уравнения четвертой степени, ограничиваясь всякий раз лишь какими-либо конкретными числовыми значениями коэффициентов. При подобном подходе уравнения 3x2 + 5x + 6 = 0 и 4x2 + 7x + 8 = 0 считались различными, хотя было ясно, что оба уравнения решаются одним и тем же методом. Кроме того, ученые стремились избежать отрицательных чисел; поэтому такое, например, уравнение, как x2 − 7x + 8 = 0, принято было записывать в виде x2 + 8 = 7x. Возникало множество типов уравнений одной и той же степени, каждый из которых приходилось рассматривать в отдельности. Главный вклад Виета в развитие алгебры состоял в введении буквенных коэффициентов.

По образованию и роду занятий Виет был юристом; математика же была для него «хобби», которому он посвящал свободное от работы время, печатая и рассылая свои работы за собственный счет. Отдельные математики использовали буквенные обозначения и до Виета, но делали это лишь от случая к случаю. Виет был первым, кто продуманно ввел буквенные обозначения и систематически их использовал. Основное новшество состояло в том, что буквами обозначались не только неизвестные или степени неизвестных, но, как правило, и коэффициенты уравнений. Такой подход позволял единообразно рассматривать все квадратные уравнения, записав их (в современных обозначениях) в виде ax2 + bx + c = 0, где буквенные коэффициенты a, b и c могут означать любые числа, а x —неизвестную величину (или неизвестные величины), значения которой требуется найти.

Виет назвал свою новую алгебру logistica speciosa (исчисление типов), противопоставляя ее тому, что он назвал logistica numerosa (исчисление чисел). Он хорошо понимал, что изучение квадратного уравнения общего вида ax2 + bx + c = 0 эквивалентно изучению всего класса квадратных уравнений. Проводя в своем сочинении «Введение в аналитическое искусство» (In artem analyticam isagoge, 1591) различие между logistica numerosa и logistica speciosa, Виет обозначил границу между арифметикой и алгеброй. По его словам, алгебра — это метод, позволяющий производить действия над типами или видами, т.е. logistica speciosa; арифметика же и теория решений уравнений с конкретными числовыми коэффициентами образуют logistica numerosa. Тем самым Виет возвел алгебру на более высокий уровень, превратив ее в науку об общих типах форм и уравнений: ведь результат, полученный в общем случае, охватывает бесконечно много частных случаев.

Основное достоинство предложенных Виетом буквенных обозначений для классов чисел состояло в том, что, доказав правильность метода решения уравнения ax2 + bx + c = 0, математики могли с полным основанием применять тот же метод к решению бесконечно большого числа конкретных уравнений, например уравнения 3x2 + 7x + 5 = 0. Можно сказать, что основной вклад Виета в развитие алгебры состоит в придании общности алгебраическим доказательствам. Но чтобы производить какие-то операции над a, b и c, где a, b и c — любые вещественные или комплексные числа, необходимо быть уверенным в применимости этих операций ко всем вещественным и комплексным числам. А поскольку не только операции не были логически обоснованы, но даже определения различных типов чисел были достаточно расплывчаты, обоснование операций, производимых над буквами a, b и c в общем виде, заведомо были недостижимой целью. Сам Виет отвергал отрицательные и комплексные числа; поэтому общность, которой он достиг в logistica speciosa, была довольно ограниченной.

Ход мысли Виета непостижим, если даже не иррационален. С одной стороны, Виет внес весьма существенный вклад, введя буквенные коэффициенты, и полностью сознавал важность этого шага, открывшего возможность получать общие доказательства. Вместе с тем Виет не признавал отрицательных чисел и отказывался придавать отрицательные значения буквенным коэффициентам — поистине и лучшие умы человечества могут страдать ограниченностью! Между тем правила действий над отрицательными числами существовали уже порядка 800 лет и всегда приводили к правильным результатам. Виет не мог игнорировать эти правила, которыми исчерпывалось почти все, чем располагала в его время алгебра. Но отрицательным числам недоставало наглядности и физического смысла, которыми обладали положительные числа. Лишь в 1657 г. Иоганн Худде (1633-1704) расширил область допустимых значений буквенных коэффициентов так, что она стала охватывать как отрицательные, так и положительные числа. Впоследствии его примеру последовало большинство математиков.

Во времена Виета (в конце XVI в.) алгебра была лишь скромным придатком геометрии. Алгебраисты занимались решением либо одного уравнения с одним неизвестным, либо решением двух уравнений с двумя неизвестными — задачи такого рода возникали в связи с практическими проблемами геометрии или торговли. Могущество алгебры оставалось скрытым вплоть до XVII в. Решающий шаг был сделан Рене Декартом и Пьером де Ферма, создавшими аналитическую геометрию (которую следовало бы называть алгебраической геометрией, если бы ныне этот термин не приобрел совсем другого смысла{75}). Основная идея новой науки состояла в том, что если на плоскости задать систему координат, то каждой кривой можно сопоставить ее уравнение. Например, уравнение х2 + y2 = 25 соответствует окружности радиуса 5 с центром в начале координат. Использование уравнений позволяет доказывать всевозможные свойства кривой гораздо проще, чем чисто геометрические (или синтетические) методы античных математиков.

Но в 1637 г., когда Декарт опубликовал свою «Геометрию», ни он сам, ни Ферма в работе 1629 г. (опубликованной посмертно) не были подготовлены к тому, чтобы принять отрицательные числа. Им обоим была ясна идея алгебраического подхода к геометрии, но ни тот, ни другой еще не представляли, сколь широки возможности такого подхода. Отрицательные числа были введены в аналитическую геометрию потомками Декарта и Ферма, и она стала играть весьма важную роль в главных событиях, происходивших в математическом анализе и в геометрии.

Представление функций алгебраическими формулами было вторым новшеством, выдвинувшим алгебру на первый план. Как известно (гл. II), идею описания движений с помощью формул выдвинул Галилей. Так, тело, брошенное вверх со скоростью 30 м/с, через t с будет находиться над поверхностью Земли на высоте h, определяемой формулой h = 30t − 4,9t2 м. Из этой формулы с помощью чисто алгебраических средств можно извлечь неисчерпаемое количество сведений о движении: например, установить максимальную высоту подъема; время, необходимое для подъема на максимальную высоту; время, необходимое для падения с максимальной высоты на землю. Вскоре математики сознали могущество алгебры, которая заняла господствующее положение в математике, оттеснив геометрию на второй план.

1 ... 40 41 42 43 44 45 46 47 48 ... 140
Перейти на страницу:
На этой странице вы можете бесплатно скачать Математика. Утрата определенности. - Морис Клайн торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...