Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Математика » Математика. Утрата определенности. - Морис Клайн

Математика. Утрата определенности. - Морис Клайн

Читать онлайн Математика. Утрата определенности. - Морис Клайн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 38 39 40 41 42 43 44 45 46 ... 140
Перейти на страницу:

Так и не преодолев трудностей, связанных с иррациональными и отрицательными числами, европейцы еще более увеличили свое, и без того тяжкое, бремя, когда набрели на новое открытие, значение которого они осознали далеко не сразу, — комплексные числа. Новые числа возникли, когда математики распространили операцию извлечения квадратного корня на любые числа, которые только могут встретиться, например при решении квадратных уравнений. Так, Кардано в гл. 37 своего трактата «Великое искусство» (Ars magna, 1545) поставил и решил следующую задачу: разделить число 10 на две части, произведение которых равно 40. Эта на первый взгляд нелепая задача допускает решение, поскольку, как заметил Д'Аламбер, «алгебра щедра: она нередко дает больше, чем от нее можно было бы требовать». Если x — одна из частей, то по условиям задачи x(10 − x) = 40 и мы получаем для x квадратное уравнение.

Решив его, Кардано нашел корни 5 + √−15 и 5 − √−15, относительно которых заметил, что эти «сложнейшие величины бесполезны, хотя и весьма хитроумны». «Умолчим о нравственных муках» и умножим 5 + √−15 на 5 − √−15. Произведение этих двух чисел равно 25 − (−15) = 40. По этому поводу Кардано философски заметил: «Арифметические соображения становятся все более неуловимыми, достигая предела столь же утонченного, сколь и бесполезного».

Еще раз Кардано столкнулся с комплексными числами в связи с алгебраическим методом решения кубических уравнений, который он изложил в своей книге. Хотя Кардано искал и отбирал только вещественные корни, выведенная им формула давала и комплексные корни (если уравнение допускало комплексные корни). Небезынтересно отметить, что в том случае, когда все три корня уравнения были вещественными, формула Кардано приводила к комплексным числам, по которым можно было найти вещественные корни.{72} Таким образом, Кардано мог не придавать большого значения комплексным числам, но, поскольку он не знал, как извлекать из комплексных чисел кубический корень и, следовательно, как получать вещественные корни, ему так и не удалось преодолеть эту трудность. Вещественные корни Кардано находил другим способом.

Бомбелли также рассматривал комплексные числа как решения кубического уравнения и сформулировал (практически в современном виде) правила выполнения четырех арифметических операций над комплексными числами, однако считал их бесполезной и хитроумной «выдумкой». Альбер Жирар признавал комплексные числа, по крайней мере как формальные решения уравнений. В частности, в работе «Новое изобретение в алгебре» Жирара говорится следующее: «Можно было бы спросить, для чего нужны эти невозможные решения [комплексные корни]. Я отвечу — по трем причинам: для незыблемости общих правил; чтобы не было других решений и по причине их полезности». Однако передовые взгляды Жирара не оказали сколько-нибудь заметного влияния на его коллег.

Декарт также был среди тех, кто отвергал комплексные корни. Именно он ввел в употребление термин «мнимое число». В своей «Геометрии» Декарт утверждал: «Ни истинные, ни ложные [отрицательные] корни не бывают всегда вещественными, иногда они становятся мнимыми». Декарт считал, что отрицательные корни можно сделать «действительными», преобразуя исходное уравнение в уравнение с положительными корнями, тогда как комплексные корни превратить в вещественные невозможно. Следовательно, комплексные корни с полным основанием можно считать не настоящими, а мнимыми.

Даже Ньютон не придавал особого значения комплексным корням, вероятнее всего потому, что в его время комплексные корни еще не имели физического смысла. Так, во «Всеобщей арифметике» ([139], изд. 2-е, 1728) Ньютон говорит: «Корни уравнений часто должны быть невозможными [комплексными] именно потому, что они призваны выражать невозможные случаи задачи так, как если бы те были возможны». Иначе говоря, задачи, которые не допускают решений, имеющих физический или геометрический смысл, должны иметь комплексные корни.

Отсутствие ясности в вопросах, связанных с комплексными числами, часто демонстрируют на примере широкоизвестного высказывания Лейбница: «Дух божий нашел тончайшую отдушину в этом чуде анализа, уроде из мира идей, двойственной сущности, находящейся между бытием и небытием, которую мы называем мнимым корнем из отрицательной единицы». Хотя Лейбниц формально производил операции над комплексными числами, он не понимал их истинной природы. Желая хоть как-то обосновать те применения, которые он сам и Иоганн Бернулли нашли комплексным числам в математическом анализе, Лейбниц высказал надежду, что вреда от этого не будет.

Несмотря на отсутствие ясного понимания природы комплексных чисел в XVI-XVII вв., алгоритмическая сторона вычислений, производимых с вещественными и комплексными числами, усовершенствовалась и расширялась. В своей «Алгебре» (1685) Валлис показал, как геометрически представить комплексные корни квадратного уравнения с вещественными коэффициентами. По существу, Валлис утверждал, что комплексные числа ничуть не более бессмысленны, чем отрицательные числа, а так как последние можно изобразить точками направленной прямой, то комплексные числа можно представить точками плоскости. Валлис предложил несовершенное представление комплексных чисел и способ, позволяющий геометрически построить корни уравнения ax2 + bx + c = 0 для случая вещественных и комплексных корней. Хотя работа Валлиса оказалась правильной, ее предали забвению, поскольку в то время, математики еще не могли по достоинству оценить применение комплексных чисел.

Хотя в XVII в. в логике математики возникли и другие проблемы, мы рассмотрим их в следующей главе, а пока нас будут интересовать те трудности, с которыми столкнулись в XVIII в. математики, пытаясь осмыслить и обосновать все то, что они делали с иррациональными, отрицательными и комплексными числами, а также разобраться в алгебре. Что касается (положительных) иррациональных чисел, то, хотя они по-прежнему не были строго определены и их свойства по существу оставались неустановленными, все же чисто интуитивно такие числа были более приемлемы, поскольку по своим свойствам они в общем были близки к целым и дробным числам. Именно поэтому математики безбоязненно использовали их, не задумываясь ни о том, что собственно они означают, ни об их свойствах. Некоторые математики, в том числе и Эйлер, полагали, что логической основой теории иррациональных чисел служит теория величин Евдокса, изложенная в книге V «Начал» Евклида. Евдокс действительно создал теорию пропорций для величин, связанную с геометрией, но отнюдь не теорию иррациональных чисел.{69} Однако, что касалось иррациональных чисел, то здесь если не логика, то по крайней мере совесть ученых мужей XVII в. была чиста.

Отрицательные числа беспокоили математиков гораздо сильнее, чем иррациональные; возможно, это объяснялось тем, что отрицательные числа не имели столь очевидного геометрического смысла и правила операций над ними выглядели менее привычно. Хотя примерно с середины XVII в. отрицательные числа использовались весьма широко, они были лишены строгого определения и логического обоснования, и многие математики либо пытались каким-то образом восполнить этот пробел, либо оспаривали само применение отрицательных чисел. В статье «Отрицательное», написанной для знаменитой французской «Энциклопедии», один из величайших мыслителей Века разума Жан Лерон Д'Аламбер утверждал: «Если задача приводит к отрицательному решению, то это означает, что какая-то часть исходных предположений ложна, хотя мы и считали ее истинной», — и далее: «Если получено отрицательное решение, то это означает, что искомым решением служит дополнение к [соответствующему положительному] числу».{73}

Работа величайшего из математиков XVIII в. Леонарда Эйлера «Полное введение в алгебру» (1770) по праву принадлежит к числу самых значительных трудов по алгебре. В этой работе Эйлер обосновал эквивалентность операций вычитания величины −b и прибавления величины b, сославшись на то, что «погасить долг означает поднести дар». Равенство (−1)(−1) = +1 Эйлер доказал следующим образом. Произведение (−1)(−1), рассуждал он, может быть равно либо −1, либо +1, а поскольку ему удалось доказать, что 1(−1) = −1, то для произведения (−1)(−1) остается единственное возможное значение, а именно +1. В XVIII в. авторы даже наиболее выдающихся работ по алгебре не различали знак «минус» как символ операции вычитания и знак «минус» как символ отрицательного числа (например, −2).

На протяжении XVIII в. против отрицательных чисел выдвигалось немало возражений. Английский математик, член совета Кларе-колледжа в Кембридже и член Королевского общества, Фрэнсис Мазер (1731-1824) был автором солидных работ по математике и фундаментального трактата по страхованию жизни. В 1759 г. он опубликовал «Рассуждение о применении в алгебре знака минус». Мазер показал, как избежать отрицательных чисел (исключение составляли лишь числа, получаемые в том случае, когда из меньшего числа необходимо вычесть большее), и в частности отрицательных корней уравнения. Он произвел тщательную классификацию квадратных уравнений: уравнения с отрицательными корнями Мазер рассматривал отдельно, а сами отрицательные корни рекомендовал отбрасывать. Аналогичным образом он поступал и с кубическими уравнениями. Об отрицательных корнях Мазер говорил:

1 ... 38 39 40 41 42 43 44 45 46 ... 140
Перейти на страницу:
На этой странице вы можете бесплатно скачать Математика. Утрата определенности. - Морис Клайн торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...