Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Прочая научная литература » Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - Марио Ливио

Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - Марио Ливио

Читать онлайн Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - Марио Ливио

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 35 36 37 38 39 40 41 42 43 ... 66
Перейти на страницу:

Рис. 46

Это радикально новое представление о природе математики. В глазах Грассмана традиционная геометрия, наследие древних греков, имеет дело с физическим пространством и поэтому не может считаться настоящей отраслью абстрактной математики. Для Грассмана математика была скорее абстрактной конструкцией человеческого разума, которая не обязательно находит себе применение в реальном мире.

Изучать тривиальную на первый взгляд цепочку логических рассуждений, которая вывела Грассмана на путь к теории геометрической алгебры, или, лучше сказать, аналитической геометрии, необычайно интересно[111]. Начал он с простой формулы АВ + ВС = АС, которая появляется в любом учебнике по геометрии при разговоре о длинах отрезков (рис. 46, а). Но тут Грассман заметил одну интересную подробность. Он обнаружил, что эта формула остается верной независимо от порядка точек А, В и С, если не просто толковать АВ, ВС и АС как длины, а приписывать им «направление», например, ВА = —АВ. Скажем, если С лежит между А и В (как на рис. 46, b), то АВ = АС + СВ, но поскольку СВ = —ВС, обнаруживаем, что АВ = АС – ВС и первоначальная формула АВ + ВС = АС восстанавливается, если просто прибавить к обеим частям ВС.

Это само по себе довольно занятно, однако расширение Грассмана таило в себе и новые сюрпризы. Обратите внимание, что если бы мы имели дело не с геометрией, а с алгеброй, то выражение вроде АВ обычно означало бы произведение А × В. В таком случае предположение Грассмана, что ВА = —АВ, нарушает один из священных законов арифметики – что от перемены мест множителей произведение не меняется. Грассман вполне отдавал себе отчет в такой неприятной вероятности и изобрел новую непротиворечивую алгебру – так называемую внешнюю алгебру, – которая позволяла существовать нескольким операциям умножения и одновременно могла иметь дело с геометрией с любым числом измерений.

К 1860 годам n-мерные геометрии плодились, как грибы после дождя[112]. Мало того, что революционная лекция Римана сделала из пространств любой кривизны и с произвольным количеством измерений фундаментальную область исследований, в развитие этой области внесли существенный вклад и другие математики, например англичане Артур Кэли и Джеймс Сильвестр, а также швейцарец Людвиг Шлефли.

У математиков появилось ощущение свободы от многовековых оков, привязывавших их к понятиям числа и пространства. Исторически сложилось, что к этим оковам было принято относиться столь серьезно, что уже в XVIII веке весьма плодовитый швейцарско-российский математик Леонард Эйлер (1707–1783) заметил, что «математика в целом – наука о количестве или наука, которая изучает способы измерить количество». Ветер перемен повеял только в XIX веке.

Все началось с введения абстрактных геометрических пространств и понятия бесконечности (и в геометрии, и в теории множеств), которые до неузнаваемости размыли представление о «количестве» и «измерении». Затем стали стремительно множиться исследования математических абстракций, и это помогло математике еще сильнее дистанцироваться от физической реальности, вдохнув при этом жизнь и «существование» в сами абстракции.

Вот какой «декларацией независимости» описал новообретенную свободу математики Георг Кантор (1845–1918), создатель теории множеств[113]: «Математика совершенно свободна в своем развитии и связана лишь самоочевидными ограничениями – ее понятия должны соответствовать друг другу логически и при этом состоять в регулируемых определениями строгих отношениях с общепринятыми понятиями, которые были введены раньше и находятся в распоряжении исследователя». К этому алгебраист Рихард Дедекинд (1831–1916) шесть лет спустя добавил[114]: «Полагаю, что понятие числа полностью независимо от идей или представлений о пространстве и времени… Числа – вольное творение человеческого разума». То есть и Кантор, и Дедекинд считали математику абстрактным концептуальным исследованием, которое ограничивается исключительно необходимостью соблюдать непротиворечивость безо всяких притязаний как на вычисления, так и на язык физической реальности. Как подытожил Кантор, «Суть математики целиком и полностью в ее свободе».

К концу XIX века большинство математиков уже придерживалось представлений Кантора и Дедекинда о свободе математики. Цель математики изменилась – теперь это был не поиск истин о природе, а конструирование абстрактных структур, систем аксиом и исследование всех логических следствий из этих аксиом.

Казалось бы, это должно было положить конец всем мучительным раздумьям над вопросом, изобретаем мы математику или же открываем. Если математика – не более чем игра, пусть и сколь угодно сложная, в которую играют по произвольно выдуманным правилам, нет никакого смысла верить в реальность математических концепций. Или все же есть?

Как ни странно, разрыв с физической реальностью вызвал у некоторых математиков прямо противоположные чувства. Вместо того чтобы раз и навсегда решить, что математика есть изобретение человека, они вернулись к первоначальной платоновской идее о математике как о независимом мире истин, чье существование столь же реально, сколь и существование физической Вселенной. Попытки связать математику с физикой эти «неоплатоники» прозвали прикладной математикой – в противоположность чистой математике, которая, как предполагалось, индифферентна ко всему физическому. Вот как об этом написал французский математик Шарль Эрмит (1822–1901) в письме голландскому математику Томасу Иоаннесу Стилтьесу (1856–1894) 13 мая 1894 года[115].

Мой дорогой друг, я очень рад, что вы склонны превратить себя в натуралиста, чтобы наблюдать явления мира арифметики. Доктрина у вас та же, что и у меня, я полагаю, что числа и аналитические функции – не произвольные продукты нашего сознания, я думаю, что они существуют вне нас и обладают всеми необходимыми свойствами предметов и явлений объективной реальности и мы находим или открываем их и изучаем их точно так же, как физики, химики и зоологи.

Английский математик Г. Г. Харди, сам приверженец чистой математики, был одним из самых откровенных сторонников современного платонизма. В красноречивом обращении к Британской ассоциации содействия науки 7 сентября 1922 года он объявил следующее[116].

Математики построили очень много разных геометрических систем – и евклидовых, и неевклидовых, для одного, двух, трех и любого другого количества измерений. Все эти системы совершенно и одинаково истинны. Они воплощают результаты наблюдений математиков над их реальностью – реальностью куда более насыщенной и куда более строгой, нежели сомнительная и неуловимая реальность физики… Поэтому функция математика – просто наблюдать факты его собственной суровой и сложной системы реальности, этот неимоверно прекрасный комплекс логических соотношений, который составляет субъект его науки, как будто он – исследователь, взирающий на далекий горный хребет, и регистрировать результаты своих наблюдений на серии карт, каждая из которых – это отрасль чистой математики.

Очевидно, несмотря на то, что все свидетельства того времени указывали на произвольную природу математики, особо упорные платоники не собирались так просто сдаваться. Напротив – они считали, что возможность углубиться, по словам Харди, в «свою реальность», гораздо интереснее, чем и дальше исследовать связи с реальностью физической. Однако независимо от представлений о метафизической реальности математики одно стало очевидно. Даже необузданная на первый взгляд свобода математики предполагала одно несокрушимое и неизменное ограничение – требование логической непротиворечивости. Математики и философы сильнее прежнего понимали, что перерезать пуповину между математикой и логикой ни в коем случае нельзя. Это породило другую идею: можно ли выстроить всю математику на едином логическом фундаменте? И если да, не в этом ли тайна ее эффективности? И наоборот – можно ли применять математические методы при изучении логических рассуждений в целом? Ведь тогда математика станет не только языком природы, но и языком человеческой мысли…

Глава 7

Логики: размышления о рассуждениях

1 ... 35 36 37 38 39 40 41 42 43 ... 66
Перейти на страницу:
На этой странице вы можете бесплатно скачать Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - Марио Ливио торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...