Геометрия, динамика, вселенная - Э Розенталь
Шрифт:
Интервал:
Закладка:
Таким образом, можно представить следующий сценарий (излюбленное слово космологов) эволюции Метагалактики. Флюктуации вакуума в области с планковскими масштабами могут приводить к началу экспоненциального расширения. Ему может предшествовать нагрев вакуума, который в данной области попадает в локальный минимум кривой 2 на рис.7. Далее в течение времени t| ~~ 10**-35 с эти флюктуации развиваются
u по экспоненциальному закону до пузыря огромных размеров, который затем распадается на метагалактики, эволюционирующие по Фридману.
===РИС.8
Схема таких переходов представлена на рис.8. Синтез фридмановской и деситтеровской моделей в значительной степени разрешает упомянутые трудности фридмановской космологии. Как упоминалось, в решении (62) отсутствует сингулярность, поэтому можно представить, что Вселенная рождается в планковской области при отсутствии сингулярности.
В изложенном сценарии решается также проблема горизонта. Метагалактика - лишь небольшая часть Вселенной, ее расширение на деситтеровской стадии происходило настолько быстро, что причинная связь между различными областями Метагалактики сохраняется вплоть до планковских масштабов, когда весь анализ нужно проводить на совершенно иных, квантовых основаниях.
Слияние обеих основных космологических моделей решает и многие другие проблемы фридмановской космологии, о которых здесь не упоминалось. А.Д.Линде в своей статье, опубликованной в журнале "Успехи физических наук" (1984. Т.144, вып.2), называет около десятка таких проблем.
7. ПРИНЦИП ЦЕЛЕСООБРАЗНОСТИ
Размерность физического пространства N = 3 занимает среди геометродинамических характеристик особое место. Изотропию и однородность физического пространства - его евклидовость (псевдоевклидовость) - можно объяснить его простотой. Эти свойства пространства характеризуют его предельную симметричность. Пространство Евклида единственное максимально симметричное пространство с нулевой (экстремальной) кривизной. Экстремальность симметрии (хотя и в меньшей степени) характеризует и другие космологические пространства (пространство Лобачевского или сферу). Поскольку известно, что природа "любит" симметрию и экстремальность, то кажется естественным, что ее выбор остановился на симметричных пространствах.
В рамках модели раздувающейся Вселенной евклидовость пространства Метагалактики естественно интерпретируется в духе основных геометрических идей. Метагалактика - малая часть Вселенной, а малые области достаточно гладкого пространства можно хорошо описать с помощью евклидовой геометрии.
Совершенно иная ситуация возникает при попытке подойти к размерности физического пространства с математических позиций. Значение N = 3 практически невыделенное число. В натуральном ряду экстремальную величину имеют значения N = 1 (или при более общем подходе к геометрии N = 0) и N = БЕСК. Тем не менее хорошо известно, что размерность физического пространства в исследованных интервалах 10**-16 ~< r ~< 10**28 см не равна этим значениям.
Разумеется, спор о "фундаментальности" тех или иных величин имеет несколько схоластический характер, тем не менее можно привести один аргумент в пользу того, что размерность более фундаментальное понятие, чем, например, изотропия и однородность, и тем более другие характеристики пространств. Действительно, всем симметричным пространствам соответствует свое определенное значение N. Однако любому N >= 3 соответствует множество симметричных пространств, число которых возрастает с N. Число же пространств переменной кривизны для любого N вообще произвольно.
Итак, значение размерности N, по-видимому, самая значительная характеристика физического пространства. Но тогда остается вопрос: почему наблюдаемая размерность Метагалактики N=3 ?
На наш взгляд, попытка искать ответ на этот вопрос, оставаясь лишь в пределах математики, обречена на неудачу. Ответ может содержаться, как нам представляется, в одной важной, но малоразработанной области физики, связанной с численными значениями фундаментальных постоянных. С первого взгляда кажется, что обращение к этой области - уход в сторону. Однако хорошо известно, что в физике прямолинейность отнюдь не является синонимом краткости.
Итак, будем искать природу размерности нашей Метагалактики в физической (динамической) выделенности размерности N = 3. Разумеется, в подобном подходе мы будем полагать неизменным другое его свойство - евклидовость, которое кажется вполне естественным вследствие его простоты. 8 дальнейшем будем опираться на полузабытую работу П.Эренфеста "Как проявляется трехмерность пространства в фундаментальных законах физики", значение которой можно оценить лишь в настоящее время. Сейчас рассуждения Эренфеста кажутся настолько простыми, что мы ограничимся лишь качественными соображениями`. В этой работе содержатся две взаимосвязанные кардинальные идеи, развитие которых и будет положено в основу нашего анализа природы пространства и физических закономерностей на современном уровне.
-----------------------------------------------------------` Подробно труднодоступная работа Эренфеста излагается в кн.: Горелик Г.Е. Почему пространство трехмерно. М.:Наука, 1982 -----------------------------------------------------------
Первая идея заключается в доказательстве отсутствия некоторых основных устойчивых связанных состояний при изменении численного значения фундаментальных постоянных.
Вторая - в утверждении: чтобы понять, почему мир устроен так, а не иначе, необходимо варьировать, изменять фундаментальные постоянные.
Заметим, что в работе Эренфеста эти утверждения не содержатся в таком явном виде, однако использованный им метод неявно опирается на обе идеи.
Подчеркнем исключительную нетривиальность этих идей не только для времени написания этой работы (1917 г.), но даже и для современной эпохи. Физики привыкли к тому, что фундаментальные постоянные в лабораторной физике имеют фиксированные значения, которые в многочисленных таблицах представлены с колоссальной точностью. Поэтому даже мысленные манипуляции с фундаментальными постоянными, к которым в первую очередь следует отнести размерность N, вызывают, как правило, в лучшем случае сомнение, а в худшем - отрицание. Однако автор надеется, что последующая часть его книги поможет убедиться в правомерности подхода Эренфеста.
Перейдем далее к изложению его идей.
Рассмотрим устойчивость системы, связанной в N-мерном евклидовом пространстве дальнодействующими силами и состоящей из двух тел. Для простоты буем полагать, что одно тело неподвижно, а движется лишь второе. Это означает, что константы взаимодействия первого тела (например, масса) существенно превышают константы взаимодействия второго и первое тело можно полагать неподвижным. В таком случае полная потенциальная энергия U| системы в N-мерном
N пространстве определяется выражением
-C M**2 U| = ---------- + -------------- . (64) N r**(N-2) 2 * m * r**2
В этом соотношении C - константа взаимодействия, r расстояние между двумя телами, член C/r**(N-2) потенциальная энергия, соответствующая статическому взаимодействию. Этот член - обобщение законов Кулона и Ньютона для евклидового пространства с произвольной целочисленной размерностью (см. связь этих законов с евклидовой геометрией в разд.3 гл.2), M - момент количества движения, m - масса движущегося тела, член M**2 / 2mr**2 центробежная энергия системы.
Из теории устойчивости следует, что система может находиться в устойчивом состоянии, если энергия U| имеет
N минимум при r /= 0 или r /= БЕСК.
Мы приведем окончательные результаты исследования выражения (64) на экстремум при различных значениях N. Оказывается, что:
при N > 4 минимум существует лишь при r=0, это соответствует падению легкого тела на тяжелое;
при N = 4 минимум отсутствует;
при N = 2, 3 возможны минимумы при конечном значении r;
при N = 1 система абсолютно устойчива, т.е. всегда связана (эта особенность отражает отмеченный ранее факт (см. разд.10 гл.2), что невылетание кварков эффективно определяется одномерной геометрией).
Таким образом, устойчивые связанные состояния, определяемые дальнодействующими силами, могут существовать лишь в пространствах с размерностью N =< 3 .
Эренфест доказал это положение в рамках классической динамики и боровской модели атома. В дальнейшем (Ф.Тангерлини, Л.Э.Гуревич, В.М.Мостепаненко) аналогичное доказательство было проведено в рамках квантовой механики.
Таким образом, в многомерных евклидовых пространствах (N >= 4) не могут существовать аналоги атомов или планет.
Далее мы приведем аргументы, поясняющие причины того, что пространство Метагалактики имеет размерность N /= 1, 2. Здесь же мы подчеркнем важный вывод из анализа Эренфеста. В многомерных евклидовых пространствах невозможно существование устойчивых связанных состояний, обусловленных дальнодействующими силами. Необходимо отметить, что доказанный факт, изолированный от физической науки как целого, может рассматриваться скорее как курьез. Единичный факт, происхождение которого непонятно и может быть отнесено к компетенции счастливого случая, едва ли может служить убедительной основой для понимания столько глубокой характеристики, как размерность N. Вероятно, поэтому работа Эренфеста была прочно забыта, и о ней вспомнили совсем недавно в связи с развитием космологии и физики элементарных частиц, развитием, воплощенным в принцип целесообразности и антропный принцип, о которых речь пойдет далее. В рамках прогресса физики и космологии последних десятилетий можно оценить по достоинству идеи Эренфеста. Далее мы остановимся на принципе целесообразности, который является развитием основных идей Эренфеста.