Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Прочая научная литература » Геометрия, динамика, вселенная - Э Розенталь

Геометрия, динамика, вселенная - Э Розенталь

Читать онлайн Геометрия, динамика, вселенная - Э Розенталь

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 21 22 23 24 25 26 27 28 29 ... 36
Перейти на страницу:

1 u u Метагалактики), тогда расстояние R=ct| есть максимальное

u расстояние, причинно связывающее две произвольные точки в метагалактике, например Землю и некоторую галактику. Расстояние R=ct| называется горизонтом. Если подставить в

u выражение для R значение t| ~~ 3*10**17 с, вычисленное в

u соответствии с моделью Фридмана или по времени существования старых звезд, то легко получить, что R ~~ 10**28 см, что совпадает с наблюдаемой областью Вселенной - Метагалактикой.

Расширение реализуется медленно. В формуле (61), определяющей зависимость размеров R Метагалактики от времени, b<1 , и, следовательно, расширение происходит медленнее, чем увеличение размеров горизонта. Поэтому если сейчас обе величины совпадают, то это означает, что ранее Метагалактика была разбита на множество причинно не связанных областей. Этот факт превращается в серьезную проблему, если его сопоставить с поразительной изотропией Метагалактики. Как различные части Метагалактики, причинно не связанные между собой, могли подстроиться друг к другу так, чтобы возникла совершенная изотропная (сферическая или квазисферическая) геометрия?

Этот вопрос и составляет проблему горизонта.

5. ФИЗИЧЕСКИЙ ВАКУУМ

Общепризнанно, что физическая терминология достаточно несовершенна. Вероятно, есть две основные причины, порождающие недоразумения.

Во-первых, историческая: когда явление только начинает изучаться и возникает его название, отражающее лишь малую часть его истинной сущности. Затем термин прочно входит в быт физики, после чего выясняется, что суть явления совсем иная, чем это полагалось вначале. Типичным примером подобного недоразумения является введенный Г.Вейлем термин "калибровочная инвариантность", отражавший первоначальное представление его автора об электродинамике как явлении, которое остается неизменным при изменении пространственно-временных масштабов.

Другой общей причиной несовершенства терминологии является принципиальная неадекватность слов (терминов) и глубинной сути явлений. Здесь вполне уместно напомнить знаменитый афоризм Тютчева: "Мысль изреченная есть ложь".

Термин "физический вакуум" несовершенен по обеим причинам. Прежде всего, еще из школьной физики мы помним, что он используется для определения весьма разреженных газов. Кроме того, с середины 20-х годов и особенно после замечательной работы П.Дирака, предсказавшего в 1928 г. существование позитрона, термин "физический вакуум" завоевывает узаконенной положение в совершенно иной области - в квантовой теории поля. В первоначальной трактовке Дирака физический вакуум - система частиц, в которой отсутствуют позитроны. В рамках квантовой электродинамики это означает, что система электронов и фотонов включает также и физический вакуум. В трактовке Дирака, которая, на наш взгляд, сохранила свое значение в рамках электродинамики и до сих пор, физический вакуум - это бесконечная совокупность электронов с отрицательной энергией. Такая система обладает бесконечной энергией, и ее непосредственно никто не наблюдал. Однако это свойство Дирак возвел в ранг постулата. В соответствии с такой картиной Дирак предсказал существование позитрона - "дырки" в физическом вакууме. Эта картина казалась настолько фантастичной, что до 1032 г., когда был открыт позитрон, картину, нарисованную Дираком, большинство физиков полагали курьезным заблуждением. Ситуация в общественном мнении полностью изменилась после открытия позитрона. Физический вакуум сделался хотя и не наблюдаемой, но физической реальностью. Однако определения или, точнее, представления о физическом вакууме модифицировались. Сохранилась идея, что вакуум - система, в которой отсутствуют реальные частицы данного сорта. Однако содержание этого понятия существенно обогатилось. Кроме электронно-позитронного вакуума, ввели представления о вакууме для других частиц. Наиболее глубокое развитие понятие вакуума получило после обобщения вакуума Дирака на любые фермионы (помимо электронов), а также и на бозоны. Сейчас подразделяют физический вакуум на бозонный и фермионный.

Выяснилось также, что физический вакуум может соответствовать не только полному отсутствию реальных частиц, но и понятию минимальной энергии системы.

В случае дираковского вакуума оба определения совпадают. Однако для некоторых бозонных полей оба определения могут быть не вполне эквивалентны. частицы данного сорта могут существовать как реальные объекты, однако система в целом включает и вакуумное состояние. Необходимо лишь, чтобы энергия системы как функция поля была минимальной.

Вероятно, наиболее впечатляющим доказательством существования вакуумной материи является беспрецедентное по точности предсказание взаимодействия реальных частиц с вакуумом. С первого взгляда может показаться, что автор запутался в дефинициях. Как реальная частица может взаимодействовать с ненаблюдаемыми частицами? Оказывается, может.

В рамках классических представлений сомнение в подобном взаимодействии вполне правомочно. Однако в квантовой теории поля существуют виртуальные частицы, время жизни которых определяется принципом неопределенности: t ~ HP / m*c**2 , где m - масса вакуумной частицы. Например, для электрона t~~10**-21 с. Это время слишком мало, чтобы частицы (В данном случае электроны с отрицательной энергией) можно было наблюдать непосредственно. Однако этого времени вполне достаточно, чтобы наблюдать взаимодействие реальных частиц с коллективом вакуумных частиц. Это взаимодействие проявляется в изменении характеристик реальных частиц. Так, аномальный магнитный момент электрона (отклонение магнитного момента электрона от боровского магнетона), обязанный взаимодействию электрона с вакуумом и вычисленный по правилам квантовой электродинамики, совпадает с наблюдаемой величиной с точностью до одиннадцатого знака!

В результате взаимодействия электрона, находящегося в атоме водорода, с вакуумом возникает спектральная линия. Ее расчетное значение v| = 1057.91 +- 0.01 МГц,

t экспериментальное - v| = 1057.90 +- 0.06 МГц.

e

Таким образом, физический вакуум - это новый тип реальной существующей материи.

Возникает вопрос: можно ли наглядно интерпретировать свойства вакуума, не прибегая к понятию частиц с отрицательной энергией, которые не наблюдаются непосредственно в природе? По-видимому, для фермионов эта трудность остается. Однако для бозонов можно моделировать вакуум, используя известные представления, заимствованные из квантовой физики макроскопических тел`.

-----------------------------------------------------------` В дальнейшем изложении модели вакуума мы следуем ст.: Киржниц Д.А., Линде А.Д. Фазовые превращения в физике элементарных частиц и космологии // Наука и человечество. М.: Знание, 1982, С.165. -----------------------------------------------------------

Бозоны, находясь в основном состоянии, обладают следующим уникальным свойством. С увеличением числа даже электронейтральных частиц и в пренебрежении гравитационными силами увеличивается их взаимное притяжение. Иначе говоря, совокупность таких бозонов стремится увеличить свою концентрацию. Это свойство обусловлено квантовомеханическими особенностями бозонов, а сам ансамбль таких частиц называется бозе-конденсатом.

Подобные системы нередко реализуются в макроскопической физике. Например, сверхпроводимость при низких температурах обусловлена свойствами бозе-конденсата. В бозе-конденсате увеличение концентрации частиц в основном состоянии определяется не увеличением сил притяжения, а уменьшением эффективного давления в системе. Давление уменьшается, следовательно, уменьшается препятствие к увеличению концентрации. Такая парадоксальная ситуация приводит иногда к весьма непривычному уравнению состояния

p = -EPS . (63)

Обычно в уравнениях состояния, связывающих давление p и плотность энергии вещества EPS , обе величины имеют одинаковый знак. Отметим, что полная плотность энергии материи остается неизменной, если выполняется уравнение состояния (63).

Эти свойства вакуума (постоянная плотность и справедливость уравнения (63)) в рамках ОТО аналогичны описываемым взятом с соответствующим знаком LAMDA-членом в уравнении Эйнштейна.

Далее возникает вопрос, существуют ли частицы, которые четко реализуют основные свойства бозе-конденсата, и в частности уравнение состояния (63). Оказывается, что гипотетические частицы Хиггса, являющиеся неотъемлемым элементом объединенной теории электрослабого взаимодействия, хорошо моделируют описанные свойства бозе-конденсата.

Спин частиц Хиггса равен нулю, и именно они обеспечивают наличие массы у переносчиков слабого

+ 0 взаимодействия: W|- , Z|-бозонов. Частицы Хиггса пока не были обнаружены на ускорителях из-за их большой массы и (или) слабости взаимодействия с другими частицами. Отметим, что в отличие от частиц с отрицательной энергией нет никаких принципиальных трудностей в наблюдениях частиц Хиггса. Полагают, что их массы превышают 100 ГэВ и поэтому на современных ускорителях их нельзя воспроизвести. На рис.7 (кривая 1) представлена типичная зависимость потенциала взаимодействия хиггсовских частиц V(FFI) от значения описывающего их поля. На этой кривой легко заметить два минимума: один соответствует значению поля FI=0, второй соответствует значению FI=FI|/=0. Важно отметить, что

1 ... 21 22 23 24 25 26 27 28 29 ... 36
Перейти на страницу:
На этой странице вы можете бесплатно скачать Геометрия, динамика, вселенная - Э Розенталь торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...