Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Прочая научная литература » Почему Е=mc²? И почему это должно нас волновать - Брайан Кокс

Почему Е=mc²? И почему это должно нас волновать - Брайан Кокс

Читать онлайн Почему Е=mc²? И почему это должно нас волновать - Брайан Кокс

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 20 21 22 23 24 25 26 27 28 ... 51
Перейти на страницу:

Это было достаточно пространное отступление, и хотя на самом деле мы еще не обсуждали, что представляет собой масса на глубинном уровне, все же дали ей описание в рамках версии школьного учебника. Более всеобъемлющий взгляд на само происхождение массы – тема главы 7, а пока давайте считать, что масса просто существует и это естественное свойство вещей. На данном этапе важно принять предположение, что масса – неотъемлемое свойство любого объекта. Другими словами, в пространстве-времени должна быть величина под названием «масса», по поводу которой все приходят к единому мнению. Следовательно, масса должна быть еще одной из инвариантных величин. Пока мы не приводили никаких аргументов, способных убедить читателя в том, что эта величина обязательно должна быть такой же, как и масса в уравнении Ньютона, однако, как и в случае многих других наших гипотез, обоснованность этого утверждения будет подтверждена или опровергнута, когда мы придем к каким-то выводам. А теперь вернемся к бильярдным шарам.

Если в момент столкновения два шара имеют одинаковую массу и скорость, то их векторы импульса будут одинаковой длины, но ориентированы в противоположных направлениях. Сложите оба вектора – и они полностью аннулируют друг друга. Согласно закону сохранения импульса, что бы ни делали частицы после столкновения, они должны разойтись с одинаковой скоростью в противоположных направлениях. В противном случае результирующий импульс не мог бы сойти на нет. Как мы уже отмечали, закон сохранения импульса распространяется не только на бильярдные шары. Он действует во всей Вселенной и именно поэтому так важен. Откат пушки после выстрела пушечного ядра или выброс осколков во всех направлениях после взрыва – оба события подчиняются закону сохранения импульса. В действительности пример с пушечным ядром заслуживает немного больше внимания с нашей стороны.

До выстрела пушки нет никакого результирующего импульса, пушечное ядро находится в стволе, а сама пушка стоит на крепостной стене. Когда пушка стреляет, пушечное ядро выстреливается из ствола с большой скоростью, тогда как сама пушка немного откатывается назад, но все же практически остается на том же месте – к счастью для солдат, которые сделали этот выстрел. Импульс пушечного ядра характеризуется вектором импульса, представляющего собой стрелку, длина которой равна массе ядра, умноженной на его скорость, и ориентирована от пушки в направлении полета ядра в момент его выброса из ствола. Закон сохранения импульса говорит нам, что пушка должна совершить откат с вектором импульса такой же длины, но ориентированным в направлении, противоположном направлению вектора импульса ядра. Но поскольку пушка гораздо тяжелее ядра, она откатывается назад с существенно меньшей скоростью. Чем тяжелее пушка, тем медленнее она движется. Следовательно, крупные и медленно перемещающиеся объекты могут иметь такой же импульс, как и небольшие, но быстро движущиеся. Безусловно, и пушка, и пушечное ядро со временем замедляют движение (и в итоге теряют импульс), а импульс ядра меняется под действием гравитации. Однако это не означает, что закон сохранения импульса не работает. Если бы можно было учесть импульс молекул воздуха, которые сталкиваются с пушечным ядром, а также импульс молекул в опорах пушки и тот факт, что импульс самой Земли немного меняется в процессе взаимодействия с ядром в условиях гравитации, то мы могли бы обнаружить, что общий импульс все же сохраняется. Физикам далеко не всегда удается отследить, как именно перераспределяется импульс при наличии таких факторов, как трение и сопротивление воздуха, поэтому закон сохранения импульса обычно используется, только когда влияние внешних факторов не играет существенной роли. Это несколько ограничивает сферу применения закона, но не приуменьшает его значения как фундаментального закона физики. Но давайте все же попытаемся закончить нашу немного затянувшуюся партию в бильярд.

Для упрощения ситуации представьте себе, что сила трения полностью отсутствует, – чтобы мы могли думать только о самих бильярдных шарах. Закон сохранения импульса, который мы только что открыли, действительно ценен, но это не панацея. На самом деле мы не можем вычислить скорость движения бильярдных шаров после столкновения, зная только факт сохранения импульса, а также массу и скорость шаров до столкновения. Для того чтобы решить эту задачу, понадобится еще один важный закон сохранения.

Мы уже познакомили вас с идеей, что движущиеся объекты можно описать с помощью вектора импульса и что сумма всех векторов импульса остается неизменной. Импульс представляет интерес для физиков именно потому, что сохраняется. Очень важно отдавать себе в этом отчет. Если вам не нравится слово «импульс», вы вполне можете говорить о сохранении вектора. Сохраняющиеся величины, как мы уже начинаем понимать, – весьма распространенное и очень полезное в физике явление. Вообще говоря, чем больше законов сохранения будет в вашем распоряжении при решении задачи, тем легче вам будет ее решить. Но один из законов сохранения выделяется на фоне остальных своей огромной практической ценностью. Инженеры, физики и химики очень медленно раскрывали его суть на протяжении XVII, XVIII и XIX столетий. Речь идет о законе сохранения энергии.

Прежде всего следует отметить, что концепция энергии более доступна для понимания, чем концепция импульса. Подобно импульсу, каждое тело может обладать энергией, но, в отличие от импульса, энергия не имеет направления. В связи с этим она больше напоминает температуру – в том смысле, что для ее описания достаточно одного числа. Но что такое энергия? Как нам ее определить? Что она измеряет? Импульс в этом отношении был проще: это стрелка, указывающая направление движения и имеющая длину, равную произведению массы и скорости. Энергию труднее определить, поскольку она может принимать разные формы, но итог достаточно очевиден: что бы ни происходило, общее количество энергии в любом процессе должно оставаться неизменным независимо от изменения других факторов. Опять же Эмми Нётер дала нам глубокое объяснение. Энергия сохраняется потому, что законы физики не изменяются с течением времени. Это утверждение не означает, что ничего не происходит – это было бы просто бессмысленно. На самом деле оно означает, что если уравнения Максвелла справедливы сегодня, то они должны быть справедливыми и завтра. Вы можете заменить словосочетание «уравнения Максвелла» любым другим фундаментальным законом физики – постулатами Эйнштейна, например.

Вместе с тем, как и в случае закона сохранения импульса, закон сохранения энергии был открыт экспериментальным путем. История его открытия восходит к промышленной революции. Все началось с работ экспериментаторов-практиков, которые обнаружили множество механических и химических явлений в поисках промышленного Иерусалима. К числу таких людей относился и несчастный граф Румфорд Баварский (рожденный под именем Бенджамин Томпсон в Массачусетсе в 1753 году), работа которого состояла в высверливании каналов в пушечных стволах для армии герцога Баварии. В процессе работы он обратил внимание, что металл пушечного ствола и сверло нагреваются, и справедливо предположил, что вращательное движение сверла превращается в тепло под воздействием трения. Это прямо противоположно тому, что происходит в паровом двигателе, где тепло преобразуется во вращательное движение колес поезда. Казалось вполне естественным связать некую общую величину с теплом и вращательным движением, поскольку, как выяснилось, эти две на первый взгляд совершенно разные вещи взаимозаменяемы. Эта величина – энергия. Румфорда называли несчастным, потому что он женился на вдове другого великого ученого, Антуана Лавуазье, после того как тот во время Французской революции сложил голову на гильотине. Румфорд ошибочно решил, что эта женщина будет делать для него то же, что и для Лавуазье, прилежно записывая все результаты его работы и повинуясь ему, как полагалось хорошей жене в XVIII столетии. Но оказалось, она проявляла кроткость только под давлением железной воли Лавуазье. В своей замечательной книге The Quest for Absolute Zero[27] Курт Мендельсон писал, что эта женщина превратила жизнь графа Румфорда в ад. Но главное не это, а то, что энергия всегда сохраняется, именно поэтому она вызывает такой интерес.

Попросите кого-либо на улице объяснить, что такое энергия, – и получите либо осмысленный ответ, либо кучу всякого вздора в духе нью-эйдж[28]. В массовой культуре существует много разных значений слова «энергия», поскольку оно употребляется очень широко. Следует отметить, однако, что на самом деле есть точное определение энергии, которое нельзя использовать для объяснения лей-линий[29], исцеления кристаллами, жизни после смерти или реинкарнации. Здравомыслящий человек мог бы сказать, что энергию можно хранить внутри аккумуляторной батареи, где она находится в состоянии ожидания до тех пор, пока кто-то не «замкнет цепь». Кто-то другой, возможно, возразит, что энергия – это показатель количества движения и что быстро движущиеся объекты обладают большей энергией, чем более медленные. Энергия, которую содержит море или ветер, – вот еще примеры определений. Вам могут также сказать, что горячие объекты содержат больше энергии, чем холодные. Гигантский маховик, который находится внутри электростанции, может накапливать энергию, которая высвобождается затем в электросеть для удовлетворения потребностей населения в электроэнергии. Кроме того, энергия выделяется в процессе деления атомного ядра. Это только несколько примеров присутствия энергии в повседневной жизни. Во всех этих случаях физики могут представить энергию в количественной форме и использовать эту информацию для подведения баланса при подтверждении факта, что суммарный эффект любого процесса сохраняет неизменным общее количество энергии.

1 ... 20 21 22 23 24 25 26 27 28 ... 51
Перейти на страницу:
На этой странице вы можете бесплатно скачать Почему Е=mc²? И почему это должно нас волновать - Брайан Кокс торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...