Этюды о Вселенной - Тулио Редже
Шрифт:
Интервал:
Закладка:
Итак, электрон внутри атома должен излучать, т.е. непрерывно терять энергию, так что в конце концов он должен будет упасть на ядро. Таким образом, атом Резерфорда оказывается нестабильным и должен в своем развитии дойти до коллапса, излучив при этом вспышку света, что полностью противоречит наблюдаемому факту стабильности вещества. Эти трудности модели стали особенно ясны во время Сольвейского конгресса 1911 г. Как при чтении трудов конгресса, так и в личных беседах с Резерфордом датчанин Нильс Бор имел возможность осознать недостатки и достоинства такой модели. По какой же причине орбиты электронов оказываются стабильными?
Модель Бора
Историк науки Томан Кун воспроизвел во всех подробностях различные этапы изнурительного труда Бора вплоть до 1913 г., в котором модель атома водорода приняла окончательный вид. Бор ограничился рассмотрением атома водорода, так как он очень прост (единственный электрон вращается вокруг одного протона) и поддается математическому анализу, поскольку электронные орбиты подчиняются законам Кеплера. Существует бесконечное число возможных орбит, характеризуемых средним расстоянием от ядра и сплющенностью, или эксцентриситетом.
Каким же образом можно получить эмпирическую информацию об этих орбитах? Ответ на этот вопрос дает спектроскопия. Если в стеклянной трубке, наполненной разреженным газом, возбудить электрический разряд, то мы вызовем излучение света (этим объясняется, например, свечение рекламных огней). Разговаривая со спектроскопистом из Копенгагена Хансеном, Бор понял, что существуют очень простые эмпирические правила, управляющие излучением световых волн газообразным водородом.
Свет и радиоволны имеют одинаковую природу, но частота света намного выше, чем у радиоволн (примерно в миллион раз). Атомы, оказывается, излучают свет вполне определенной частоты, как миниатюрные радиостанции, причем частота эта зависит от вида атома. в 1905 г. для объяснения фотоэлектрического эффекта Эйнштейн предположил, что световое излучение сконцентрировано в «пакетах» (квантах света, или фотонах), энергия которых пропорциональна частоте, в соответствии с соотношением Планка.
Таким образом, атом может излучать свет, теряя энергию дискретно, порциями, пропорциональными частоте. в модели Резерфорда падение электрона на ядро представляло непрерывный процесс, напоминающий спираль, по которой двигалась до конца своих дней станция «Скайлэб». Бор же постулировал (и это был очень смелый шаг), что электроны могут находиться только на некоторых определенных орбитах из бесконечного числа их, предсказываемого моделью. Тогда, перескакивая с одной орбиты на другую, электрон теряет вполне определенное количество энергии, в точности равное предсказанному эмпирическими формулами для излучения света.
Квантование орбит
Так Бор, определив правила для орбит, пришел к квантованию. Правила Бора для атома водорода выглядели очень просто. Трудности, возникшие при их распространении на другие атомы, потребовали для своего преодоления создания квантовой механики. Основное утверждение квантовой механики, в сущности, состоит в том, что электрон, как и любая другая материальная частица, живет еще и второй жизнью – жизнью волны (дуализм волна – частица). Формула Планка определяет связь между энергией частицы и ее частотой, если частица рассматривается как волна. Квантовая механика устанавливает полное соответствие между волновыми свойствами и свойствами частицы.
Обычно бывает (или бывало) трудно представить волновую природу электрона, которая проявляется, только когда длина волны оказывается большой в сравнении с препятствиями, встречающимися на его пути. Это как раз и происходит внутри атома, поэтому невозможно проследить за движением электрона, считая его воображаемым шариком в миниатюрной солнечной системе. Скорее нужно подходить к атому, как к аналогу звукового резонатора, как к странному музыкальному инструменту, в котором вместо звуковых волн мы имеем волны электронные. Именно такое сравнение дает возможность понять суть квантования орбит. Трубка органа может колебаться только на определенной частоте, зависящей от формы и длины трубки; то же происходит в случае струны рояля. Теперь нужно говорить не об электронных орбитах, потерявших смысл, а, скорее, о различных «модах», т.е. видах колебаний. Меняя моду, электрон излучает световую волну с характерной частотой, зависящей от конкретного перехода.
Применение идей Бора при рассмотрении более сложных атомов позволило надежно обосновать периодическую систему Менделеева и выяснить природу химической связи. Столь же важным оказалось открытие того, что дуализм волна – частица универсален и присущ всякой материи. Несколько замечаний, высказанных Эйнштейном на эту тему, позволили Шредингеру вывести знаменитое уравнение, описывающее движение этих волн материи.
Остается вопросом истории, какие же причины привели Эйнштейна (да и Шредингера) в стан противников новой физики, поднявшейся из пепла старой, в частности, именно благодаря им. Разумеется, и до сих пор существуют сомнения относительно правильной интерпретации квантовой механики. Большинство физиков придерживается интерпретации так называемой Копенгагенской школы. Все, включая самого Эйнштейна, признали выводы и формулы, которые следуют из этой интерпретации. Тем не менее вплоть до своей смерти в 1955 г. Эйнштейн считал квантовую механику несовершенной теорией, неопределенность которой представляет собой серьезный недостаток, частично закрывающий от нас истину.
3. Соотношение неопределенностиОдним из популярнейших персонажей комиксов 30-х годов, вне сомнения, был Брик Брадфорд (в итальянском варианте – Джорджо Вентура). в одном из своих наиболее известных похождений он, уменьшенный дьявольской машиной, внедряется в монету стоимостью один цент, чтобы подробно исследовать атом меди. Атом представлен в виде планетарной системы в миниатюре; вокруг Солнца вращаются планеты, населенные странными существами. Рассказик в картинках несомненно был навеян представлением об атоме Бора: вокруг ядра, исполняющего роль Солнца, вращаются электроны-планеты. на этом все сходство практически кончается. Ядро на самом деле не освещает систему (а если и освещает, то излучая γ-лучи), электроны в действительности все одинаковы и отталкиваются друг от друга при сближении; и что еще хуже, орбиты электронов практически заполняют весь атом, в то время как орбиты планет лежат в одной плоскости (называемой эклиптикой).
Представление о планетарной системе все же имеет несомненные заслуги в деле создания зрительных образов и популяризации чрезвычайно сложных понятий; временами бывает удобно воспользоваться несовершенными образами в качестве первого приближения, чтобы передать суть дела. с точки зрения дидактики открытие квантовой механики ухудшило положение, хотя и позволило нам глубже постичь некоторые странные свойства атомов.
Корпускулярная природа света
В своей первой работе 1905 г. Альберт Эйнштейн привлек корпускулярную теорию света для объяснения аномалий, наблюдавшихся в фотоэлектрическом эффекте: согласно этой теории, свет распространяется в виде пакетов («квантов» света, или «фотонов») вполне определенной энергии, пропорциональной частоте в соответствии с законом Планка.
В известном смысле лампа представляет собой «пулемет, стреляющий фотонами»; как мы уже говорили, энергия этих фотонов может меняться к зависит от цвета света; энергия синих квантов вдвое превышает энергию красных; кванты радиоволн исключительно маленькие, в то время как кванты γ-излучения громадны (на атомном уровне); в предельном случае космического излучения могли бы существовать кванты с энергией, сравнимой с энергией мяча для гольфа.
Наблюдение электронов
Предположим теперь, что нам захотелось увидеть движение электронов внутри атома так же, как с помощью телескопов мы наблюдаем движение планет. Поскольку ядро само не излучает и электроны не испускают собственного света, пришлось бы осветить атом извне, используя подходящий источник. Длина волны падающего света должна быть сравнимой с размерами наблюдаемых объектов; так, радар, работающий на метровых радиоволнах, не «увидит» мухи; по этой же причине обычный микроскоп не может помочь нам увидеть внутренность атома. Самый мелкий объект, наблюдаемый в обычном видимом свете, имеет размеры порядка тысячной доли миллиметра, а атом примерно в десять тысяч раз меньше; чтобы увидеть в атоме хоть что-нибудь, нужно освещать его рентгеновскими лучами. Кстати, первые успехи в понимании структуры атома были достигнуты как раз тогда, когда физики получили в свое распоряжение источник коротковолнового излучения. Частота увеличивается с уменьшением длины волны, длинные радиоволны (с длиной волны порядка 1 км) имеют низкую частоту (для указанной длины волны она составляет 300000 герц; 1 герц=1 цикл в секунду); частота волн видимого света доходит до 3·1014 герц, что в миллиард раз больше.