Имя: Избранные работы, переводы, беседы, исследования, архивные материалы - Алексей Федорович Лосев
Шрифт:
Интервал:
Закладка:
«Если мы ничто перед Абсолютным, то все же мы – нравственно однородны с Ним, мы можем постигать Его <…>; мы носим в себе трансфинитное, сверх-конечное, мы – космос – не являемся чем-то конечным, прямо противоположным Божеству, мы – трансфинитны» 28.
Действительно, в содержании теории бесконечных множеств можно указать важнейшие параллели научного опыта (здесь – математического) и опыта религиозного. Только что было сказано о «нравственной однородности». Путь, по которому пошел Г. Кантор вглубь (вдаль, ввысь) мира множеств и мира бесконечности, предстает действительно однородным и цельным. Для убедительного изложения этой характерной особенности Канторова пути мы можем взять на вооружение оценку, которой Г. Кантор же расправлялся с нелюбезной ему идеей потенциально бесконечного: последнее, судил он, «имеет лишь отраженную реальность, всегда указывая на а<ктуально> б<есконечное>, благодаря которому оно лишь и возможно». Да, к любому конечному числу всегда можно добавить очередную единицу и эта нескончаемая череда указывает на целостный свой итог и возможно лишь как подступ к целому – актуальной бесконечности. Да, точно так же доступно увеличению актуально бесконечное, точно так же и трансфинитная череда указывает на новую целостную реальность в очередном ярусе иерархии бесконечностей. Да, нескончаемая последовательность все нарастающих и нарастающих актуальных бесконечностей указывает на новую целостность, Transfinitum отражает свет высшей реальности, Absolutumʼа 29. Устремленность и трезвление в мире нравственной жизни, нарастание величин и их ограничение сверху в мире абстрактных чисел, – вот та параллель, что взволновала ищущие умы от Г. Кантора и Серапиона Машкина 30 до московских имяславцев. Убедительным свидетельством одного из последних мы и закончим эту часть нашего текста. В рассуждениях о природе личности и ее пределах (относятся к 1920-м, т.е. имяславским годам) В.Н. Муравьев дважды прибегал к «математическому сравнению» – сначала, когда он говорил о свойстве «расширения самоуглубляющейся личности» и ассоциировал его со способностью «математического ряда бесконечно умножаться и расширяться», и потом, когда подчеркивал, что «здесь мы имеем только половину задачи». Именно, писал В.Н. Муравьев, в полном подобии с тем, как в деяниях математика
«для операций над числами и для самого их существования требуется, чтобы действующий закон индукции постоянно ограничивался тем, что Кантор назвал действием второго закона порождения чисел [о нем у нас шла речь – В.Т.], а именно, способности нашей ограничивать каждое число, постигать его <…> как некую целостную сущность»,
так и
«бесконечное плавание в глубинах личности мира должно <…> приводить к вычерчиванию в ней определенных индивидуальных областей-берегов, иерархия которых и составит содержание вечных форм или проявлений мира» 31.
Небезынтересна для нашей темы еще и такая широкомасштабная подробность. Канторово описание форм «единств-множеств», можно сказать, обескураживает представляемым запасом номенклатуры бесконечностей. В самом деле, при современном состоянии развития «точных» наук мы не можем продвинуться по цепочке бесконечностей дальше двух-трех шагов (буквально), быстро исчерпывая содержательность соответствующих примеров. Так, за областью конечных чисел следует первая бесконечность («первый числовой класс», по Г. Кантору), соответствующая всей совокупности натурального ряда чисел, и мощность этой бесконечности суть первая трансфинитная мощность. Далее следует вторая бесконечность («второй числовой класс»), соответствующая множеству действительных чисел, и мощность этой бесконечности составляет вторую трансфинитную мощность. И это всё или почти всё. Г. Кантор еще предположил, что максимально вообразимая «сплошность», т.е. континуум, также имеет вторую трансфинитную мощность, однако не смог доказать этого, и «континуум-гипотеза» до сих пор будоражит умы самых отчаянных романтиков от математики. Можно и дальше двигаться ввысь по лестнице бесконечностей, – теория множеств это позволяет, – однако у последующих трансфинитов уже нет «земных» интерпретаций 32. К этому пиршеству форм бесконечностей можно добавить еще и тот факт (он строго доказан самим Г. Кантором), что в каждом числовом классе данной мощности можно построить сколь угодно много бесконечных множеств с различными порядками 33, т.е. на иерархию бесконечностей по кардиналам накладывается еще одна иерархия бесконечностей, на этот раз по ординалам… Как тут не вспомнить образ непостижимой бездны, «заключенной» и «запечатанной» единым словом (имяславцы любили цитировать молитву Манассии): да, создатель теории множеств воистину окликал эту бездну.
Упоминание о трансфинитных мощностях подводит к последнему, еще не затронутому у нас понятию из имяславского списка А.Ф. Лосева. Строго говоря, алеф – это не самостоятельное понятие, а условное обозначение, название, имя для мощности бесконечных множеств или, как говорил П.А. Флоренский, это «символ бесконечности». А говорить о данном имени мощности (напомним, что мощность – это число) нужно хотя бы затем, чтобы в который раз отдать дань философской чуткости самого именовавшего. В условном обозначении есть безусловная ценность. Наделяя именем первой буквы древнего алфавита минимальную «единицу» из «натурального ряда бесконечностей», автор имени (разумеется, это Г. Кантор) 34 не столько напоминал современникам забытую традицию буквенной передачи цифр, сколько предоставлял хороший образ для выражения глубинной связи числа и слова. В этом соединительном «и» обозначился мощный смысловой пласт, который заслуживает специального и неспешного исследования, причем не обязательно проводимого с позиций имяславия. Здесь же приходится касаться лишь ближайших слоев пласта, а именно, затронуть вопрос о скрытой (глубинной) семантике терминов теории множеств. Вот «алеф» – о нем и о хранимой им идее встречи и взаимопрорастания уже сказано. Вот «мощность» – слово, которое Г. Кантор нашел не сразу, поначалу предпочитая сравнивать множества по «высоте» 35, что тоже, кстати, прелюбопытно. Недаром ему нравилось указывать термину «мощность» латинские синонимы plenitudo («полнота», «обилие») и potestas («сила», «мощь», «ценность», «действительность», «возможность» и, наконец, «смысл») 36: здоровье и энергию источает такое слово. Вот «актуальная бесконечность» и знаменательная часть этого составного термина, ушедшая в прилагательное. Заметим, что латинские переводы слов «акт» и «актуальный» передают греческие прообразы – «энергия» и «энергийный». Нетрудно видеть, что в глубинную семантику теоретико-множественной терминологии волею судьбы и благодаря духовной силе интуиции Г. Кантора легли воистину первоосновные, жизненно важные, с позиций имяславски настроенных философов, идеи. Поэтому можно согласиться с лосевским мнением