Вокруг Света 2006 №04 - Вокруг Света
Шрифт:
Интервал:
Закладка:
Конечно, виза в журнале на процессы в реакторе никак не влияет. Важно другое — в самые ответственные моменты работы сотрудники нарушали порядок эксплуатации. Сначала не устранили причины снижения мощности реактора, затем не получили подпись начальства, в дальнейшем допустили еще более грубые отступления от правил. Причем, как выяснилось на следствии, операторы делали это и раньше. Так, в регламенте записано: «При снижении оперативного запаса реактивности до 15 стержней реактор должен быть немедленно заглушен». Однако 25 апреля, в 7 часов 10 минут, менее чем за сутки до катастрофы, в реакторе оставили всего 13,2 стержня. Ситуацию исправили только через 7 часов. За это время на дежурство заступила новая смена, но никто так и не поднял тревогу. Как будто все было в порядке. «...у нас неоднократно было менее допустимого количества стержней — и ничего, — свидетельствовал потом Игорь Казачков, работавший 25 апреля начальником дневной смены 4-го блока. — Никто из нас не представлял, что это чревато ядерной аварией. Мы знали, что делать этого нельзя, но не думали…»
К часу ночи реактор заработал на мощности 200 МВт. Чтобы удержать ее на этом уровне, из активной зоны приходилось выводить все больше управляющих стержней. Регламент требовал: «Работа реактора при запасе менее 26 стержней допускается с разрешения главного инженера станции». Увы, сотрудники 4-го блока нарушили и это правило. Известно, что управлять реактором в процессе самоотравления невозможно. Поэтому его и глушат. Но дежурные продолжали упорствовать. Почему? Остается только гадать. Видимо, полагались на свой опыт больше, чем на автоматику, предусмотренную конструкторами. К 01 часу 22 минутам 30 секундам количество «эффективных» стержней уменьшилось до 6—8. В момент взрыва, по некоторым оценкам, их осталось не больше двух. Когда из активной зоны было выведено слишком много стержней, предотвратить катастрофу могло только чудо. Чуда, увы, не произошло.
Чернобыльский РБМК-1000
Реактор размещается в бетонной шахте размером 24х24 м и представляет собой цилиндр диаметром 14 м и высотой более 20 м, сложенный из графитовых колонн. Каждая колонна имеет центральное отверстие, пронизывающее ее насквозь. В отверстия вставлены трубы технологических каналов диаметром 80 мм, где размещаются урановые сборки, двигаются стержни-поглотители и под давлением 65 атмосфер течет вода, отводящая тепло. Эти трубы сделаны из циркония, графитовая кладка герметично закрыта кожухом, а вокруг нее по бокам, сверху и снизу располагаются баки с водяной биологической защитой. Рабочая температура воды на входе технологических каналов составляет 210°С, на выходе — 284°С. Из каналов пароводяная смесь поступает в барабан-сепараторы, в которых от воды ежечасно отделяется 5 000 т сухого пара и направляется на лопатки двух паровых турбин мощностью по 500 МВт. Чтобы в активной зоне реактора типа РБМК-1000 шла контролируемая цепная реакция, в системе управления используются 211 стержней, регулирующих коэффициент размножения нейтронов по всему объему активной зоны. При необходимости они автоматически передвигаются внутри нее вверх-вниз, поддерживая этот коэффициент близким к 1 локально и по всей зоне. Так реактор РБМК-1000 работает в нормальном режиме. Если его работа дает сбой, автоматически включаются системы, обеспечивающие возвращение нужного параметра к рабочей норме или снижение тепловой мощности реактора вплоть до полной его остановки без повреждения активной зоны.
Общий вид 4-го блока Чернобыльской АЭС. Высокая труба над зданием предназначена для удаления газообразных отходов, возникающих при работе реактора
1— шахта, где расположен реактор
2— урано-графитовый реактор
3— поглощающие нейтроны стержни
4— технологические каналы
5— пароводяная смесь
6— пароотделитель
7— забирающая тепло вода
8— электрогенератор
9— турбина
10 — паросборник
11 — внешний водоем, используемый в качестве «холодильника» в данной тепловой машине
1— реактор
2— технологические каналы
3— пароводяные коммуникации
4— барабан-сепаратор
5— паровые коллекторы
6— трубопроводы, по которым остывшая вода возвращается в реактор
7— насосы, обеспечивающие циркуляцию воды
8— раздаточные коллекторы
9— водяные коммуникации
10 — система контроля герметичности оболочек урановых топливных элементов
11 — верхний слой защиты
12 — боковая зашита
13 — нижний слой защиты
14 — бассейн для выдержки рабочих стержней
15 — загрузочная машина
16 — мостовой кран
«Глуши реактор»
Тем временем люди спокойно работали на своих местах, готовясь к эксперименту по выработке электроэнергии во время выбега — постепенной остановки раскрученной турбины. Начальник вечерней смены Юрий Трегуб, оставшийся в ночную, чтобы помочь товарищам, рассказывал позже: «Отключают турбину от пара и в это время смотрят — сколько будет длиться выбег. Мы не знали, как работает оборудование от выбега, поэтому в первые секунды я воспринял… появился какой-то нехороший такой звук… как если бы «Волга» на полном ходу начала тормозить и юзом бы пошла. Такой звук: ду-ду-ду… Переходящий в грохот. Появилась вибрация здания… Затем прозвучал удар… Я отскочил, и в это время последовал второй удар. Вот это был очень сильный удар. Посыпалась штукатурка, все здание заходило… Свет потух, потом восстановилось аварийное питание…»
После первого удара оператор сообщил об аварийном увеличении мощности. Раздался крик «Глуши реактор!», и кто-то нажал «стоп-кран» — кнопку АЗ-5, посылающую сигнал на опускание аварийных стержней с большой скоростью.
Однако было поздно
Поскольку автоматическую систему аварийной остановки реактора отключили еще раньше, цепная реакция вышла из-под контроля. Это произошло, скорее всего, на высоте 1,5— 2,5 м от основания реактора. Неконтролируемое расщепление ядер вызвало перегрев охлаждающей воды. Циркониевые трубы не выдержали давления смеси воды и пара, некоторые из них взорвались. Оказавшись внутри реактора, вода превратилась в сжатый пар. Стремительно расширяясь, этот пар приподнял крышку реактора, которая весила 2 500 тонн. Двигаясь вверх, крышка последовательно разорвала оставшиеся технологические каналы. Теперь уже многие тонны перегретой воды обратились в пар, и сила его давления подкинула крышку на 10—14 м. В эту дыру ринулась смесь пара, обломков кладки, ядерного топлива, технологических каналов и других конструкционных элементов. Крышка перевернулась в воздухе и упала обратно ребром, раздавив верхнюю часть активной зоны и вызвав дополнительный выброс радиоактивных веществ.