Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Психология » Расколотый мир. Опыт анализа психодинамики личности человека в экстремальных условиях жизнедеятельности - Дмитрий Сочивко

Расколотый мир. Опыт анализа психодинамики личности человека в экстремальных условиях жизнедеятельности - Дмитрий Сочивко

Читать онлайн Расколотый мир. Опыт анализа психодинамики личности человека в экстремальных условиях жизнедеятельности - Дмитрий Сочивко

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 8 9 10 11 12 13 14 15 16 ... 61
Перейти на страницу:

Использование абстрактных математических моделей в психологии, видимо, не ограничивается только описанием различных психических процессов и явлений. Познавательные психические процессы человека сами представляют собой модели объектов внешнего мира, и с этой точки зрения их удобно представлять теми или иными алгебраическими моделями. По ходу изложения мы будем стараться иллюстрировать эту мысль. Здесь мы покажем, что всякий отраженный в сознании человека объект является множеством (в точном смысле этого слова). Подтверждением тому может служить психологический принцип предметности восприятия, объясняющий факты, полученные в экспериментах с так называемыми двойственными изображениями (черный – белый крест, жена – теща, два профиля – ваза). Выяснено, что при рассматривании такой картинки человек может в каждый фиксированный момент времени воспринимать либо одно, либо другое изображение, но никогда не может видеть одновременно оба. Здесь нам, однако, могут возразить, что человек способен думать одновременно о двух нарисованных крестах. Действительно, посредством мысли человек может осуществить операции объединения этих объектов, получив в результате некоторое новое множество, но при этом в каждый фиксированный момент времени человек может думать только о каком-то конкретном множестве, даже если оно получено как комбинация других. В книге Ф.Д. Горбова и В.И. Лебедева (Горбов, Лебедев, 1975) описаны случаи, когда человек оказывался в условиях, требующих одновременной переработки информации о различных (или даже одинаковых, но по-разному заданных) множествах объектов. Авторы показывают, что в такой ситуации мозг человека отказывается работать, и наступает временная потеря сознания.

В приведенных примерах мы коснулись таких важных понятий, как подмножество данного множества, элемент множества, объединение множеств. Сейчас мы определим точно эти и некоторые другие важные понятия теории множеств. Введем некоторые обозначения. Как это и делается обычно, множества мы будем обозначать большими буквами латинского алфавита А, В,…., элементы соответствующих множеств – маленькими буквами a, i… Знак ∈ означает принадлежность элемента множеству. Например: аА означает, что а является элементом множества А. Если же он таковым не является, то используют знак ∉: аА. Если имеем дело с множествами, состоящими более чем из одного элемента, то необходимо бывает различать свойства, присущие всем элементам данного множества, и свойства, присущие только какой-то их части или единственному элементу из всего множества. Символ ∀ а – означает «любой элемент а», а ∃ а «существует элемент а» (далее обычно следует указание – какой). Если важно подчеркнуть, что такой элемент в интересующем нас множестве только один, то пишут ∃!а. Таким образом, любой элемент а либо является элементом данного множества А, либо не является им.

Введем теперь понятие подмножество множества, для чего нам понадобятся еще два символа: ⇔, означающий «тогда и только тогда», и ⇒ означает «следует» (влечет). Запись ВА⇔=вВвА может быть прочитана следующим образом: В является подмножеством А тогда и только тогда, когда каждый элемент из В является элементом А. Если же напротив, А является подмножеством В, то мы можем записать следующее: АВ⇔=аАаВ. Знак А обозначает конъюнкцию и может быть прочитан как союз «и»:

Выражение (1) означает, что каждый элемент множества В является элементом множества А и наоборот, каждый элемент множества А является элементом множества В. Легко видеть, что в этом и только в этом случае множества А и В состоят из одних и тех же элементов. Множества, состоящие из одних и тех же элементов, называют равными или находящимися в отношении равенства, что записывают А=В.

Таким образом, знак равенства означает, что А есть в точности то же самое множество, что и В, но может быть по-другому заданное.

Способов же задания множества существует бесконечно много. Однако все их можно разделить на две группы: 1) множество может быть задано перечислением своих элементов. В этом случае применяют запись

2) Множество может быть задано условием, позволяющим отличать его элементы среди всех других. В этом случае каждый элемент множества удовлетворяет заданному условию и ни один элемент, не принадлежащий данному множеству, не удовлетворяет указанному условию. Тогда применяется следующая запись:

Итак, мы определили понятия множества и подмножества. Полезно также ввести понятия надмножества как множества, содержащего данное множество:

и понятие пустого множества, как множества, не содержащего ни одного элемента (обозначается ∅). Пустое множество по определению является подмножеством любого множества. Введем теперь понятие объединения множеств. Множество С является объединением множеств А и В, если каждый элемент С является либо элементом А, либо элементом В. В принятой символике это можно записать так:

Аналогично можно определить понятие пересечения двух множеств. Множество С является пересечением множеств А и В, если каждый элемент С является одновременно и элементом А и элементом В, т. е. С есть множество общих элементов А и В. Если, однако, у А и В нет общих элементов, то С есть пустое множество. Это можно записать так:

Если В является подмножеством А, то можно определить понятие разность множеств А и В, как множество тех элементов А, которые не являются одновременно элементами множества В.

Разность А и В называется также дополнением В в А. Введем теперь понятие пары объектов. Этими объектами могут быть как элементы множеств, так и сами множества. В понятии пары кроме количества выбираемых объектов фиксируется также порядок их следования. Так, например, если A ≠ В, то две пары множеств (А, В) и (В, А) не являются равными: (А, В) ≠ (В, A). Рассмотрим теперь множество всех пар элементов множества А, оно называется декартовым квадратом множества и обозначается А2, Смысл такого названия в том, что если множество А содержит k элементов, то количество упорядоченных пар будет равно k2 .

Итак, декартов квадрат множества А сам является некоторым множеством. Любое его подмножество будем называть бинарным отношением, заданным на множестве А. (Отметим, что все другие виды отношений, которые можно определить на множестве А, также являются подмножествами, но уже не декартова квадрата А, а любой другой декартовой степени А, т. е. являются множествами троек, четверок и т. д. элементов из А.)

Так как понятие отношения является одним из важнейших понятий современной психологии, остановимся подробнее на уяснении смысла его точного определения, приведенного выше. Первое, что бросается в глаза, это то, что отношение является некоторым множеством. Это на первый взгляд противоречит тому смыслу, который вкладывается в понятие отношение в гуманитарных науках. На наш взгляд это противоречие является только кажущимся. Действительно, когда говорят об отношениях личности, отношениях между людьми, отношениях человека к тем или иным объектам внешнего мира, то создается впечатление, что выражение отношения не предполагает наличия какого-то множества, над которым это отношение можно было бы задать.

Определим теперь некоторые важные свойства отношений. Возьмем для примера отношение родства между людьми. Обозначим его буквой Р (людей будем обозначать маленькими буквами латинского алфавита). Первое, что можно сказать об этом отношении, это то, что человек не является родственником самому себе, т. е. аРа неверно. Такое отношение называется антирефлексивным. Если же отношение аРа – выполнено, т. е. пара (а, а) принадлежит Р, то такое отношение называется рефлексивным, т. е. обладает свойством рефлексивности. Например, отношение равенства является рефлексивным. Любой объект равен сам себе.

1 ... 8 9 10 11 12 13 14 15 16 ... 61
Перейти на страницу:
На этой странице вы можете бесплатно скачать Расколотый мир. Опыт анализа психодинамики личности человека в экстремальных условиях жизнедеятельности - Дмитрий Сочивко торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...