Тело и зрелое поведение. Фундаментальные основы тревожности, сексуальности и способности к обучению. Паттерны движения в условиях воздействия силы тяжести - Мойше Фельденкрайз
Шрифт:
Интервал:
Закладка:
Но самое большое отличие гладких мышц от поперечно-полосатых состоит в том, что гладкие мышцы сокращаются всеми своими волокнами одновременно. Таким образом, если все, кроме одного, нервные волокна, питающие мышцу радужной оболочки, будут разорваны, она будет сокращаться почти обычным образом. При этом возбуждение одного нервного волокна приведет к сокращению всей мышцы, а не только одного ее пучка, как в скелетных мышцах. Передача сигналов осуществляется не с помощью электрических импульсов, а посредством диффузии вещества от нерва к мышце.
Градация сокращения достигается путем изменения количества секреции вещества от нерва к мышце.
При ближайшем рассмотрении мы видим, что в действительности в функциях красных и белых, полосатых и поперечно-полосатых мышц нет такой резкой разницы, как могло бы показаться на основе присутствующих макроскопических различий между ними. Можно утверждать, что при тонических сокращениях используется другая анатомическая часть мышцы или другой механизм, нежели чем при при сильных клонических и резких сокращениях.
Было доказано (Маринеско, Крейндлер и др.), что поперечнополосатая мускулатура имеет две хронаксии (будет пояснено позже): одна соответствует высокой возбудимости, характерной для клонических или фазных сокращений, а другая – низкой возбудимости, соответствующей тоническому сокращению. С микроскопической точки зрения мы уже упоминали, что в большинстве мышц присутствует смесь красных и белых волокон. Существует множество теорий, объясняющих, каким образом мышцы сокращаются двумя столь разными способами – клоническим и тоническим: в первом случае утомляясь после нескольких сокращений, во втором – оставаясь практически неутомимыми; однако этот факт уже тщательно установлен и согласован.
Передача возбуждения по нервам происходит очень медленно по сравнению с электрической проводимостью в металлах. Она имеет совершенно иную природу; скорость проведения в одних нервах измеряется в метрах в секунду, в других – в сантиметрах в секунду. Координация во времени любого двигательного акта может быть достигнута за счет более быстрой проводимости в более длинных нервах или за счет более раннего возбуждения длинных нервов.
Любая передача данных ослабляется на пути изменениями, которые происходят в сердцевине проводника или вне его; и тогда было бы необходимо начинать ее с более сильных сигналов в более длинных нервах, чтобы компенсировать потерю силы, которая увеличивается с расстоянием. Однако если говорить о проводимости нерва, то сила сигнала одинакова на всем его протяжении и в точке назначения равна тому импульсу, который его запустил.
Трансмиссия – это реакция прохождения сигнала (деполяризация), которая на протяжении всего пути забирает локально часть потенциальной энергии нерва. Позже потенциальная энергия восстанавливается до прежнего уровня, но на это требуется время.
Проводимость нерва не является такой же непрерывной, как поток жидкости или газа, а скорее напоминает пулеметную очередь. У человека среднее количество импульсов в секунду составляет порядка пятидесяти.
В самом нерве нет ничего, что ограничивало бы проводимость в обратном направлении. При перерезании нерва и возбуждении отрезанных концов импульсы проходят как в одну, так и в другую сторону. Вентильное действие, ограничивающее передачу в обратном направлении, в действительности происходит из-за синапсов.
Клетка может быть связана с некоторыми пирамидальными волокнами, экстрапирамидальными волокнами и многими другими. С другой стороны, каждое волокно пирамидального тракта связано с большим количеством моторных клеток. Каким образом клетка в один момент посылает импульсы вниз по одному волокну, а затем вниз по-другому, или по нескольким из них одновременно? И как мотонейрон в один момент реагирует на импульсы от одной клетки, а в следующий – от другой?
Мы видели, что нервные волокна можно считать полностью изолированными друг от друга и что между ними отсутствует поперечная диффузия. По итогам работы Шеррингтона установлено, что в синапсах импульсы передаются от одного волокна к другому. От Лапика мы узнали о существовании конституциональной хронаксии, то есть о том, что любая возбудимая единица имеет собственную временную константу и для того, чтобы возбудить ее, возбуждение должно длиться определенное время или иметь соответствующую для этого частоту. Теперь, если клетки, соседние с возбужденной, имеют такую же хронаксию, возбуждение переходит к ним и возбуждает их до того же уровня. Изохронные клетки и волокна возбуждаются одновременно. Если какие-то из соседних клеток имеют лишь незначительно отличающуюся хронаксию (не более одной трети), они гомохронны, и возбуждение передается им лишь частично. Гетерохронные единицы, то есть те, которые имеют сильно отличающуюся хронаксию, остаются полностью незадействованными. Клетка поочередно реагирует то на одну соседнюю клетку, то на другую в зависимости от хронаксии, которой она обладает в данный момент. Фактически существует лишь одна конституциональная хронаксия и ряд функциональных хронаксий или подчиненных хронаксий, то есть хронаксия любой возбудимой единицы в живом организме не является установленной, а подчинена высшим центрам. Эти центры осуществляют свой контроль, изменяя хронаксию тех элементов, которые они возбуждают.
Лоуи, показал, что если сердце лягушки перфузировать раствором Рингера и при этом возбуждать периферийный конец блуждающего нерва, перфузируемая жидкость замедляет работу сердца другой лягушки. Вырабатывается вещество, представляющее собой сложный эфир холина и идентифицированное некоторыми авторами как ацетилхолин. То же самое вещество образуется при возбуждении любых парасимпатических волокон.
Стимуляция симпатических нервных окончаний вызывает секрецию «симпатина» (Canon), вещества, родственного адреналину. Однако волокна симпатической иннервации вблизи ганглиев, как и парасимпатические, выделяют ацетилхолин.
Были обнаружены и другие вещества, обладающие выраженным избирательным действием на хронаксию различных групп нервов. Так, например, гистамин вырабатывается при раздражении кожи.
Таким образом, похоже, что вегетативная нервная система вырабатывает химические вещества и регулирует себя посредством химического воздействия. Ранее мы указывали, что гладкие мышцы, которые иннервируются вегетативной системой, продолжают нормально сокращаться, даже когда перерезана большая часть волокон питающего их нерва: факт, который нельзя объяснить механизмом проводимости, который, как известно, действует в спинномозговых нервах, питающих поперечно-полосатые мышцы.
Однако это вполне удовлетворительно объясняется секрецией химического вещества. В случае химической секреции секретирование одного волокна может вызвать сокращение всей мышцы, но, возможно, это произойдет не так быстро.
Согласно результатам исследований, при раздражении кожи у человека вырабатывается гистамин.
Относительная медлительность гладкой мускулатуры и заметная иррадиация вегетативной иннервации полностью объясняются более медленной диффузией химического вещества во всех направлениях по сравнению с проводимостью в спинномозговых нервах (деполяризация).
Мы уже видели, что во всех скелетных мышцах есть вегетативные волокна, которые имеют красные и белые волокна. Следовательно, вегетативная иннервация будет отвечать за более медленные тонические сокращения, а ацетилхолин и адреналин будут регулировать возбудимость мускулатуры.
Многие исследователи обнаруживали ацетилхолин после стимуляции всех окончаний поперечно-полосатых мышц. Дейл предложил классифицировать все нервы как холинергические и адренергические. Холинергические, как и парасимпатические, действуют путем выработки в своих окончаниях ацетилхолина, а адренергические –