Новая история происхождения жизни на Земле - Питер Уорд
Шрифт:
Интервал:
Закладка:
То, что жизнь сопровождается обменом веществ, является одним из фундаментальных аспектов определения жизни. Для жизни на Земле первичными источниками энергии стали жар подземных недр и тепло солнечного света, последнее само по себе есть энергия — результат солнечных термоядерных реакций. Наиболее общий способ получения энергии от Солнца — фотосинтез. В этом процессе солнечный свет дает энергию для преобразования углекислоты и воды в углеродные соединения со многими химическими связями, накапливающие энергию. При распаде этих связей энергия высвобождается. Жизнь на Земле использует большое разнообразие биохимических реакций, все они включают перенос электронов. Но эта система работает, только если есть так называемый электрохимический градиент. Чем круче падение градиента, тем больше энергии высвобождается. Это означает, что некоторые типы метаболизма вырабатывают больше энергии, чем другие. Так же, как некоторые среды потребляют энергии больше прочих. Органические, углеродосодержащие соединения, обладающие наибольшим количеством сохраненной энергии, — это жиры и липиды, длинные углеродные цепочки, хранящие много энергии в своих химических связях.
Обмен веществ — это сумма всех химических реакций в организме. Вот вирус — он очень мал, типичные вирусы не более 50–100 нанометров в диаметре (учтем, что нанометр равен 10–9 м). Делятся вирусы на две группы: одни заключены в белковую оболочку, другие имеют и белковую оболочку, и дополнительное покрытие вроде мембраны. Внутри этих оболочек находится самая важная часть вируса — его геном, нуклеиновая кислота. В одних это ДНК, в других — только РНК. Число генов также сильно различается: от трех (например, оспа) до более чем 250 отдельных генов. Существует огромное количество вирусов, и если бы они считались живыми организмами, то заняли бы очень большое место в биологической классификации. Но вообще-то их относят к неживой природе.
Переработанная нами версия древа жизни, которая включает вирусы и вымершие образцы РНК-жизни. Данный вариант древа жизни требует новой систематической категории, превосходящей домен (который в свою очередь превосходит царство). РНК-жизнь нельзя вписать в принятое древо жизни. (см.: Питер Уорд. «Жизнь, которую мы не знаем» (Peter Ward, Life as We Do Not Know It, 2006).
Вирусы, которые содержат только РНК, демонстрируют, что РНК сама по себе, в отсутствие ДНК, может содержать информацию и служить фактической молекулой ДНК[46]. Это доказывает, что до ДНК и появления жизни мог существовать «мир РНК»[47]. И существование вирусов с РНК без ДНК позволяет сделать еще более удивительный вывод.
Вирусы — паразиты. Технически они классифицируются как внутриклеточные паразиты, поскольку не могут размножаться без клетки-хозяина. В большинстве случаев вирусы внедряются в клетку живого организма, захватывают органеллы, производящие белок, и начинают производить себе подобных, превращая пораженную клетку в завод по производству вирусов. Вирусы, таким образом, имеют огромное влияние на биологию зараженных «хозяев».
Самым сильным аргументом против вирусов как живых организмов является тот факт, что они не способны к самостоятельному воспроизведению и поэтому не соответствуют понятию «живой». Но следует помнить, что вирусы — безусловные паразиты, а паразиты имеют тенденцию подвергаться значительным морфологическим и генетическим изменениям, приспосабливаясь к своим «хозяевам».
Возникает вопрос: являются ли живыми другие паразиты? Паразитизм, который на деле есть весьма развитая форма хищничества, вообще рассматривается как результат долгой эволюции. Паразиты — не примитивные создания. Но, как и вирусы, они кажутся не совсем живыми. Роды простейших Cryptosporidium и Giardia, оба паразитирующие на людях и других млекопитающих, имеют периоды покоя, когда они мертвы, как и любой вирус вне организма хозяина. Без хозяина эти и прочие организмы (и тысячи других) не живут и, вероятно, не могут быть причислены к живым. Однако, попадая в хозяина, они демонстрируют все признаки жизни, которые мы знаем: метаболизм, воспроизводство, проходят отбор по Дарвину. Но если мы допустим, что вирусы — живые, а это мнение получает все более широкое распространение, то нам придется радикально переосмыслить существующее представление о древе жизни на Земле.
К вопросам о жизни на Земле можно добавить еще несколько: каково самое простое соединение атомов, которое можно назвать живым? Какова самая простая форма жизни на Земле? И что ей необходимо, чтобы остаться живой? Чтобы ответить на эти вопросы, нам необходимо понять, что требуется текущим формам жизни на планете для обретения и поддержания того состояния, которое мы выше определили как «живое». А для этого мы кратко опишем всю ту химию, которая вовлечена в процессы обретения и поддержания жизни.
Неживые составляющие земного живого организма
Из всех веществ, необходимых для жизни, нет более важного, чем вода, причем вода в одном состоянии — жидком, не в твердом (лед) и не в газообразном (пар). Земная жизнь состоит из молекул, купающихся в жидкостях. Вообще, хотя в жизненных формах можно найти много больших неустойчивых молекул, на самом деле в основном жизнь использует только четыре основных типа: липиды, углеводы, нуклеиновые кислоты и белки — и все они либо погружены в жидкость (в живом организме — в воду с растворенными солями), либо служат внешними стенками для содержания молекул и воды.
Липиды, жиры, являются ключевыми ингредиентами для клеточных мембран. Они водоустойчивые из-за множества атомов водорода, но содержат мало кислорода и азота. Липиды — основные компоненты клеточных границ, стенок, которые разделяют внешнюю среду и внутреннее пространство клетки, которую мы называем живой. Эти мембраны очень тонки, они контролируют проникновение веществ в клетку и выделение веществ из нее.
Углеводы — второй важнейший тип структур, из которых состоит жизнь, их по-простому называют сахара. Соединив их «цепочкой», мы получим полисахарид, то есть «много-сахарид». Углеводы, один он или их много, являются важным строительным материалом, поскольку обладают способностью соединяться друг с другом или с другими органическими и неорганическими молекулами и образовывать молекулы большего размера.
Сахара весьма значимы еще и потому, что являются строительным элементом для следующего типа жизненных молекул — нуклеиновых кислот. Представители этой группы хранят генетическую информацию каждой клетки. Это — молекулы-великаны, в которых объединены сахара и азотсодержащие соединения, называемые нуклеотиды, которые в свою очередь созданы из меньших единиц-оснований, фосфора и других сахаров. В такой структуре самыми важными являются основания — именно они и становятся «буквами» генетического кода.
ДНК и РНК — сахара, которые из всех важных молекул жизни занимают самое главное место. ДНК, имеющая два «позвоночника» (знаменитая «двойная спираль», описанная ее открывателями, Джеймсом Уотсоном и Фрэнсисом Криком), является системой хранения информации самой жизни. В ДНК встречается четыре вида азотистых оснований: аденин, гуанин, тимин и цитозин. Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином, гуанин — только с цитозином. Порядком пар обеспечивается язык жизни — это гены, которые кодируют сведения о той или иной форме жизни.
ДНК — носитель информации, а РНК? А РНК имеет только одну цепочку и является слугой для ДНК — приводит информацию в действие, или обеспечивает производство белков. Молекулы РНК схожи с ДНК, имеют спираль и основания, но отличаются обычно (но не всегда) тем, что спираль только одна.
Почему ДНК и РНК так сложно устроены? Дело в том, что информация нужна как для первичного строительства («закладка фундамента»), так и для дальнейшего решения и выполнения множества прочих задач, для того чтобы «здание» оставалось живым. ДНК — это инструкция по сборке, строительству, ремонту, а также по производству копий самой себя и всего, что в ней есть закодированного. Согласно компьютерной терминологии ДНК — это «программное обеспечение», она несет в себе информацию, но выполнять предписанное этой информацией сама не может. А белки можно принять за компьютерное «железо», аппаратное обеспечение, оно нуждается в «софте», который указывает, когда и где должны произойти те или иные химические изменения, чтобы произвести материалы, необходимые для жизни РНК имеет интересное свойство быть как программным, так и аппаратным обеспечением, а в некоторых случаях — и тем и другим одновременно.