Древнеиндийская цивилизация - Григорий Бонгард-Левин
Шрифт:
Интервал:
Закладка:
Позднее Брахмагупта приводит для π приближенное V~10,— оно хотя и менее точное, чем у Арьябхаты, но более удобное.
Некоторые из сиддхант свидетельствуют о знакомстве из авторов с тригонометрией хорд александрийских астрономов. Опираясь на труды эллинистических ученых, индийцы внесли много нового. Главным явилась замена хорд синусами. Если греки именовали хорды «прямыми в круге», то индийцы стали называть их словом «джива» (букв. «тетива»), а перпендикуляр, опущенный из середины дуги на середину стягивающей ее хорды, — «стрелой». Варахамихира в «Панчасиддхантике» заменил хорду полухордой, т. е. линией синуса. Сама по себе такая замена может показаться и не столь существенной, ибо хорда дуги равна удвоенному синусу дуги 2f, т. е. отличается от синуса лишь постоянным коэффициентом. Но в действительности этот переход от хорды к полухорде был очень важен, поскольку позволил естественно ввести различные функции, связанные со сторонами и углами прямоугольного треугольника.
Многие астрономические и математические идеи индийцев оказали влияние на арабскую науку VII — первой половины VIII в., хотя прямое проникновение индийских математических и астрономических знаний относится к последней трети VIII в. «В 156 г. хиджры (т. е. в 773 г. — Г. Б.-Л.) из Индии в Багдад прибыл человек, весьма осведомленный в учениях своей родины. Этот человек владел приемом Синдхинд, относящимся к движениям светил и вычислениям с помощью синусов, следующих через четверть градуса. Он знал также различные способы определения затмений и восхода созвездий Зодиака. Он составил краткое изложение соответствующего сочинения. Халиф приказал перевести индийский трактат на арабский язык, чтобы мусульмане могли приобрести точное знание звезд. Перевод был поручен Мухаммаду, сыну Ибрагима ал-Фазари, который первым из мусульман приступил к углубленному изучению астрономии. Позднее этот перевод астрономы назвали Большим Синдхиндом» — так писал в своем биографическом словаре в XIII в. Абул-Хасан ал-Кифти.
Ал-Бируни отмечает, что приезд индийского астронома Канка состоялся несколько ранее: в 771 г. он привез два сочинения индийского математика и астронома Брахмагупты. Ал-Фазари выполнил сокращенный перевод его двух сочинений и представил их в виде традиционных для мусульманской науки зиджей — таблиц с необходимыми пояснениями и рекомендациями. Перевод-обработка первого трактата был назван «Большой Синдхинд» в отличие от других обработок сиддхант Брахмагупты.
По утверждению известного исследователя арабской астрономии К. Наллино, «Большой Синдхинд» настолько «прославился среди арабов, что они работали исключительно по нему вплоть до дней ал-Ма'Муна, когда начало распространяться учение Птолемея в сфере астрономических расчетов и таблиц». Перевод второго трактата Брахмагупты получил в мусульманской литературе название «Арканд». Это сочинение уступало по популярности первой работе, но и оно способствовало знакомству арабских ученых с античной астрономической традицией, проникновению индийских представлений о центре обитаемой Земли, о величине Земли и ряда других сведений.
Переводами и обработками не ограничивалось знакомство с индийской математической традицией. На основании сведений, полученных от индийских ученых, посетивших двор халифа ал-Мансура в 777–778 гг., багдадский астроном и математик Якуб ибн Тарик составил два трактата: «Строение небесных сфер»-и «Определение границ Земли и сферы», в которых, в частности, установил соотношение между индийскими и арабскими мерами длины, привел вычисленную индийцами величину окружности Земли — около 41 тысячи километров. Индийские научные традиции были развиты в работах Машалаха, работавшего с 762 по 809 г. в Ираке. Некоторые его сочинения дошли до нас на арабском языке, другие сохранились в переводах на латынь и греческий. Он был также знаком с сирийскими источниками, но наибольшее воздействие на него оказала наука сасанидского Ирана, откуда он узнал об индийской астрономии и математике.
Огромный вклад в распространение индийской математики внес ал-Хорезми (787 — ок. 850 г.). В его трактате «Об индийском счете» впервые в странах ислама излагается десятичная позиционная система счисления с применением нуля, которая быстро получила распространение среди математиков. Трактат положил начало применению этой системы не только на Ближнем и Среднем Востоке, но и в Европе: начиная с XII в. его латинский перевод был основным сочинением по практической арифметике. Ал-Хорезми подробно описал сложение, вычитание, умножение, деление и извлечение квадратного корня с помощью индийских цифр. Эти действия производились на специальной счетной доске, покрытой песком или пылью, чтобы легко было стирать использованные цифры, а на их место записывать новые. Такой способ вычислений был столь широко известен, что в ряде арабских стран даже сами индийские цифры, принявшие несколько иную форму, стали называть губар («пыль»). Способ выполнения арифметических операций был заимствован у индийцев вместе с системой нумерации; не случайно индийское название арифметики — патиганита переводится как «искусство вычисления на доске».
Кроме арифметического трактата ал-Хорезми принадлежат трактат по алгебре, астрономические таблицы широт и долгот городов, сочинение о календаре. Все они носят следы индийского влияния, хотя включают элеметы как вавилонской, так и грекоримской науки.
С индийской математикой связано немало сочинений в странах ислама: «Книга разделов об индийской арифметике» ал-Уклидиси, написанная в 952–953 гг. в Дамаске (в ней делается попытка введения десятичных дробей); «Достаточное об индийской арифметике» ан-Насави (ум. в 1030 г.), где имеется способ извлечения кубических корней; «Сборник по арифметике с помощью доски и пыли» ат-Туси (1201–1274), в котором дано описание извлечения корня любой степени из целого числа и т. д.
Весьма заметным было влияние индийской математики на науку Западной Европы. Проникновение сюда индийско-арабских цифр началось не позднее Х в. через Испанию. Наиболее ранняя из дошедших до нас европейская рукопись, в которой приведены индийско-арабские цифры, датируется 976 г. С XI в. новые цифры все чаще встречаются в многочисленных рукописях, причем в начертаниях отмечались существенные различия. Огромное значение для дальнейшего развития математики в странах Европы имели переводы с арабского: благодаря им европейские ученые познакомились с научными достижениями индийцев. Особенно интенсивно переводы осуществлялись в XI–XIII вв., но изучение арабского наследия продолжалось и позднее. Выполненный в середине XII в. латинский перевод арифметического трактата ал-Хорезми послужил отправной точкой для появления множества арифметических сочинений, основанных на десятичной позиционной системе счисления. Новая арифметика получила развитие не только в Западной Европе, но и в Византии. Так, Максим Плауд (XIII–XIV вв.) одно из своих сочинений посвятил индийской арифметике.
Кроме системы нумерации широко использовались зародившиеся в Индии арифметические, алгебраические, геометрические и тригонометрические правила. Ряд употребляемых ныне во всем мире специальных терминов — индийского происхождения (например, «цифра», «корень», «синус»). Санскритский термин, которым индийцы обозначали нуль — «шунья», был переведен арабами как «ас-сыфр»; в средневековой Европе слово cifra стало означать «нуль». Постепенно в XIV–XV вв. слово «цифра» стало применяться ко всем знакам от нуля до девяти. Индийцы именовали корень «пада» или «мула» (основание, сторона). Поскольку «мула» — это и «корень растения», арабские переводчики сиддхант передали этот термин словом «джизр», также обозначающим корень растения, в латинском переводе арабское название корня было передано словом radix, откуда и происходят наши термины «корень» и «радикал». Линию синуса индийцы называли «джива» или «джья» — «тетива». Переводчики транскрибировали его арабскими буквами «джиба», а так как в арабском краткие гласные не обозначаются и долгое «и» в слове «джиба» могло произноситься как «и», арабы восприняли это слово как «джайб» — «впадина» и соответственно на латынь этот термин был передан словом, имеющим то же значение.
Медицина. Традиционная индийская медицина, завоевавшая авторитет и признание во многих странах мира, зародилась в глубокой древности. Уже в ведийскую эпоху важную роль играла аюрведа (букв. «наука о долголетии»). Название указывает, по-видимому, на первоначально распространенное представление о том, что главной целью медицины является отыскание способов продлить жизнь человека. То же представление отражено и в созданных позже трактатах, посвященных лечению конкретных заболеваний, причем обеспечиваемое правильным режимом и лечением здоровье воспринималось как средство к достижению этой цели. Считалось, что человек должен не только долго жить, но и избавиться от страданий, причиняемых физическими недугами. В этом смысле все индийские медицинские сочинения по праву именовались «аюрведическими».