Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Химия » Энергия жизни. От искры до фотосинтеза - Айзек Азимов

Энергия жизни. От искры до фотосинтеза - Айзек Азимов

Читать онлайн Энергия жизни. От искры до фотосинтеза - Айзек Азимов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 76 77 78 79 80 81 82 83 84 85
Перейти на страницу:

Своим цветом молекула хлорофилла обязана тому факту, что она поглощает свет некоторых волн видимой части спектра, в частности длинные волны красного и оранжевого участков спектра, а большую часть остальных — отражает. Если из солнечного света вычесть красный и оранжевый цвета, то получится зеленый — что мы и наблюдаем.

Поглощая свет, хлорофилл повышает свое энергетическое содержание. В главе 11 я уже описывал механизм, с помощью которого молекула хлора расщепляется светом на более энергетически насыщенные атомы хлора. Конечно, процессы, в которых участвует хлорофилл, не так просты, но принцип тот же — хлорофилл получает дополнительную энергию за счет поглощения света.

Получив энергию, хлорофилл теперь может ее потратить и вернуться в «естественное состояние», произведя при этом некую энергоемкую реакцию, определяющую весь процесс фотосинтеза.

Так что же это за «определяющая реакция»? Ответ на этот вопрос тоже стал возможен только с появлением технологий изотопного маркирования.

Как видно из формулы, приведенной в этой главе, в реакцию фотосинтеза должно входить соединение воды и углекислоты. В состав обеих этих молекул входит кислород, так что логично предположить, что производимый растениями молекулярный кислород должен включать в себя атомы из обоих этих веществ. В конце концов, фотосинтез ведь должен представлять собой реакцию, обратную дыханию. Если при дыхании кислород объединяется с органическими веществами для образования и углекислоты, и воды, то при фотосинтезе углекислый газ и вода должны расщепляться для образования кислорода, верно ведь?

Но голые рассуждения, не подтвержденные экспериментальными свидетельствами, могут оказаться очень обманчивыми. И вот американские биохимики Сэмюэл Рубен и Мартин Кеймен решили получить такие свидетельства, устроив эксперимент с использованием тяжелого, но нерадиоактивного изотопа кислорода О18. Большая часть всех атомов кислорода, 99,76 процента, принадлежит к самому распространенному изотопу, О16, так что вещество с необычно большим содержанием О18 всегда заметно отличимо в масс-спектрографе.

В 1938 году Рубен и Кеймен изготовили некоторое количество воды с содержанием О18 и стали поливать этой водой растения. В производимом растениями кислороде О18 оказалось столько же, сколько и в употребленной ими воде. С другой стороны, если же растениям подавался углекислый газ с содержанием О18, то лишь крайне малый процент этого О18 попадал в состав производимого растениями кислорода. Вывод ясен — вода, и только она, в процессе фотосинтеза расщепляется, и только из расщепленной молекулы воды образуется кислород. А молекула углекислого газа остается нерасщепленной и интегрируется в таком виде в состав формируемых в процессе фотосинтеза органических тканей.

Таким образом были установлены общие очертания реакции фотосинтеза. Хлорофилл поглощает солнечный свет и использует полученную таким образом энергию для энергоемкой реакции расщепления воды на водород и кислород (рис. 73). Эта реакция называется «фотолиз», или «фотохимическая диссоциация» воды.

Получаемый таким образом водород может использоваться двумя различными способами. Половина атомов водорода направляется в дыхательную цепочку, как и водород, получаемый в результате обычной дегидрогенизации. В принципе фотолиз воды можно рассматривать и как катализируемую хлорофиллом дегидрогенизацию воды. После этого водород снова объединяется с кислородом на заключительном этапе цитохромоксидазы и опять образуется молекула воды. По ходу этих реакций формируется три молекулы АТФ; таким образом энергия солнечного излучения преобразуется в химическую энергию АТФ, а поскольку кислород, полученный одновременно с пущенным в дыхательную цепочку водородом, при образовании воды снова потребляется, то в этой цепочке реакций выделения кислорода не происходит.

Оставшаяся половина атомов водорода вступает в соединение с углекислотой с образованием углеводов (вот здесь-то и высвобождается кислород, который больше растению ни для чего в дальнейшем не пригодится и потому выпускается в атмосферу). Это энергоемкая реакция, и она проходит за счет АТФ, образованных в процессе фотолиза и реакции формирования воды.

Так энергия солнечного излучения, будучи переведенной в химическую энергию АТФ, используется для образования углеводов (а в конечном итоге—и жиров и прочих составляющих тканей), за счет чего существуют все формы жизни на Земле — и растительные, и животные.

Рис. 73. Фотосинтез

Теперь осталось только установить, как именно водород соединяется с углекислотой. Это оказалось непростой задачей. Исследователи пытались использовать углекислый газ, содержащий необычный изотоп, но через короткий промежуток времени этот изотоп обнаруживался уже во всех составляющих тканей. Тогда ученые решили выделить хлоропласта (клетки растения, содержащие хлорофилл) отдельно и проверить на них, но изолированный хлорофилл вообще отказывался проявлять какие бы то ни было фотосинтетические свойства, так что и эксперименты с упрощенной системой, оказавшие такую неоценимую помощь при работе с реакциями, катализируемыми ферментами, в данном случае ни к чему не привели.

Надеяться оставалось только на радиоактивные изотопы. К сожалению, единственным известным в 30-х годах XX века радиоактивным изотопом углерода был С11, столь нестабильный, что за полчаса почти весь уже переставал существовать, и при этом очень дорогой.

Но вот в 1940 году Рубен и Кеймен открыли С14, радиоактивный изотоп углерода, оказавшийся, ко всеобщему изумлению, сравнительно стабильным, а потому — удобным для практического применения. Вообще, можно сказать, что С14 — это самый полезный изо всех изотопов.

После Второй мировой войны американские биохимики А. Бенсон и Мельвин Кальвин попытались исследовать фотосинтез с помощью С14. Они взяли взвесь одноклеточных водорослей и обработали ее углекислотой с содержанием С14. Через небольшой промежуток времени они убили клетки в надежде на то, что С14 успел использоваться лишь на ранних этапах внутриклеточных реакций. Затем содержимое убитых клеток было сегментировано с помощью технологии бумажной хроматографии (см. главу 16). Осталось только посмотреть, какие участки бумаги проявляют радиоактивность, и определить, какое вещество на них отложилось.

Всего полторы минуты спустя различных радиоактивных веществ оказалось уже не менее пятнадцати, тогда Бенсон и Кальвин еще больше сократили временной промежуток. Через пять секунд после обработки радиоактивной углекислотой радиоактивных веществ на бумаге оказалось пять, впрочем, наибольшую радиоактивность проявляли два из них. Оба оказались разновидностями фосфоглицериновой кислоты, в состав которой входят три атома углерода.

Проведя множество подобных экспериментов, Бенсон и Кальвин разработали логическую схему происходящего. Углекислота, попадая в клетку, соединяется с рибулозо-1,5-дифосфатом. (Этот сахар, содержащий пять атомов углерода и две фосфатные группы, называют еще «углекислотной ловушкой».)

Получив углекислый газ, рибулозо-1,5-дифосфат превращается в соединение из шести атомов углерода и вскоре распадается на две молекулы по три атома углерода в каждой — это и есть обнаруживаемые при бумажной хроматографии фосфоглицериновые кислоты. Это энергоемкий шаг, и именно при нем используются АТФ, образованные путем фотолиза и реакции формирования воды. Затем эти трехуглеродные сахара преобразуются в крахмал посредством ряда реакций, которые уже хорошо изучены и не требуют дальнейшего приложения энергии.

Наверное, самым примечательным свойством фотосинтеза является тот факт, что в качестве источника энергии при нем применяются красный и оранжевый цвета. Фотохимические реакции, производимые человеком в лаборатории, обычно задействуют гораздо более энергетически насыщенное излучение синей, фиолетовой и ультрафиолетовой части спектра. Способность хлорофилла использовать длинноволновое излучение очень важна, так как его в солнечном свете содержится гораздо больше, чем ультрафиолета. Кроме того, более длинные волны света лучше проникают сквозь атмосферную пыль, чем коротковолновое излучение, так что длинноволновой свет можно назвать более надежным источником энергии.

Фотосинтез имеет необычно высокую эффективность для фотохимической реакции. Отто Варбург и Дин Берк в 1950 году выдвинули предположение, что на участие в фотосинтезе одной молекулы углекислоты требуется затратить всего четыре кванта красного света. Для перевода одного моля углекислоты в углевод требуется 115 килокалорий, а если Варбург и Берк правы, то для аналогичной реакции, используя красный свет, потребуется всего 175 килокалорий. Таким образом, получили феноменальную эффективность фотосинтеза, равную 115/175, то есть около 65 процентов.

1 ... 76 77 78 79 80 81 82 83 84 85
Перейти на страницу:
На этой странице вы можете бесплатно скачать Энергия жизни. От искры до фотосинтеза - Айзек Азимов торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Аннушка
Аннушка 16.01.2025 - 09:24
Следите за своим здоровьем  книга супер сайт хороший
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...