Курс истории физики - Кудрявцев Степанович
Шрифт:
Интервал:
Закладка:
Непрерывность жидкого и газообразного состояний была теоретически исследована в диссертации Ван-дер-Ваальса (1837—1923), опубликованной в 1873 г. Эта диссертация вышла вторым изданием в 1899 г., составив первую часть монографии «Непрерывность газообразного и жидкого состояний». Вторая часть этой монографии, посвященная бинарным смесям, вышла в 1900 г. В 1910 г. Ван-дер-Ваальсу «за его труды, относящиеся к уравнению состояния газов и жидкостей», была присуждена Нобелевская премия по физике. В предисловии к своей диссертации 1873 г. Ван-дер-Ваальс писал: «Название «Непрерывность газообразного и жидкого состояний», кажется вполне подходящим, поскольку в основу рассуждений положена главная мысль, что от одного агрегатного состояния можно совершенно непрерывным образом достигнуть другого; выражаясь геометрически, это значит, что обе части изотермы принадлежат одной кривой, даже тогда, когда эти части связаны частью, которая не может быть осуществлена в действительности». «Строго говоря, — продолжает Ван-дер-Ваальс, — я хочу доказать еще больше, а именно тождественность обоих агрегатных состояний». Ван-дер-Ваальс считает, что между жидкостью и газом существует только количественное различие в большей или меньшей плотности, но не качественное.
Уравнение Ван-дер-Ваальса и его изотермы вошли во все учебники физики, и на их рассмотрении мы останавливаться не будем.
Работа Эндрюса получила широкий резонанс, и критическое состояние стало предметом исследования физиков многих стран. Существенный вклад в изучение критического состояния внесли русские физики А.Г.Столетов (1839-1896), Б. Б. Голицын (1862-1916), М.П.Авенариус (1835-1895). А.Г.Столетов в ряде статей (1882, 1892, 1893, 1894) рассмотрел и разъяснил вопросы, относящиеся к критическому состоянию, высказал существенные замечания по некоторым утверждениям. Он изучил обширную литературу по теме, начиная с работ Эндрюса и Ван-дер-Ваальса. Он отмечает, что с теоретической стороны идея Эндрюса (Столетов пишет «Андрюс») разработана Ван-дер-Ваальсом, Клаузиусом и Максвеллом, а с экспериментальной «прежде всего и более всего трудами М.П.Авенариуса и его учеников (Зайончевского, Надеждина, Страуса)». Ученик Ленца М.П.Авенариус, продолжая традиции своего учителя, в 70-х годах организует физическую лабораторию в Киевском университете. В лаборатории Авенариуса по существу впервые в России был поставлен физический практикум и студентами велись научные исследования. Несмотря на то что, как говорил Авенариус, «помещение лаборатории мизерно до невозможности», здесь под руководством Авенариуса проделан ряд превосходных работ по физике критического состояния. Результаты исследований Авенариуса и его учеников по определению критических постоянных различных веществ вошли в мировую справочную литературу.
Вопрос о критическом состоянии тесно связан с проблемой сжижения газов. Газ никаким давлением не может быть обращен в жидкость, если он не охлажден до температуры ниже критической. Существуют различные методы сжижения газов. Адиабатический метод основан на охлаждении газа при адиабатическом расширении. Этим методом Кальете обратил в декабре 1877 г. в жидкость кислород. Кислород, сжатый в трубке до давления 3000 атмосфер и охлажденный с помощью соответствующей смеси до — 29°С, внезапно расширялся, давление падало до 1 атмосферы, температура понижалась до — 200°С.
Швейцарский физик Рауль Пикте (1846-1929) добился почти одновременно с Кальете сжижения кислорода, получив кислород в виде жидкости, а не тумана, как у Кальете. Пикте применял последовательное, или каскадное, охлаждение.
Рис. 42. Аппарат для сжижения гелия в лаборатории Камерлинг-Оннеса в Лейдене
Немецкий физик Карл Линде (1842— 1934), применив дроссельный эффект, или эффект Джоуля — Томсона, открытый этими учеными в 1852 г., построил машину для получения жидкого воздуха с производительностью несколько литров в час. Этот принцип позволил в 1898 г. Дьюару (1842—1923) ожижить водород, что тщетно пытались сделать Пикте, Вроблевский, Ольшевский (1846—1915). Последние наблюдали на мгновение туман из капель водорода, но получить ощутимую порцию жидкости им не удавалось. Вроблевский (1845— 1888) погиб от взрыва при опыте по сжижению водорода.
Еще труднее оказалось обратить в жидкость гелий— Х. Камерлинг-Оннес (1853—1926) смог осуществить сжижение гелия только спустя 10 лет после сжижения водорода. Первая порция жидкого гелия была получена им 10 июля 1908 г. У гелия очень низкая температура инверсии (—240°С), а дроссельное охлаждение начинается только при температуре ниже температуры инверсии. Поэтому гелий приходится предварительно охлаждать жидким водородом, а потом уже пропускать через дроссель. Этот метод оказывается очень сложным и малоэффективным, и в течение длительного времени лишь лейденская лаборатория Камерлинга-Оннеса производила жидкий гелий. В 30-х годах XX в. появились новые эффективные установки, в частности известный турбодетандер П.Л.Капицы.
Переходим теперь к теоретическим достижениям. Здесь прежде всего необходимо указать на интенсивное развитие термодинамики, которая из механической теории теплоты превратилась в мощную теоретическую дисциплину, применимую не только к механическим и тепловым, но и к другим областям физики и химии. Этой мощью термодинамика обязана общности своих понятий и методов, приложимых к любой конкретной физической системе независимо от ее структуры и состояния . Так, уже Карно нашел и успешно применил метод циклов к исследованию тепловых машин и получил результат, не зависящий от конкретного устройства машины. Метод циклов позволил Клаузиусу получить результаты термодинамики весьма общего характера.
В дальнейшем развитии термодинамики метод циклов широко использовался, изобретались различные циклы, позволяющие получить надежные выводы о том или ином физическом или химическом процессе. Наряду с методом циклов развился и аналитический метод— метод термодинамических функций. Термодинамические функции—это функции состояния системы, обладающие тем свойством, что при переходе системы от одного состояния в другое их изменение не зависит от пути перехода и дифференциал таких функций есть полный дифференциал. Такой функцией является потенциальная энергия в механике. Но еще до установления закона сохранения энергии петербургский академик Герман Иванович Гесс (1802—1850), изучая теплоту, выделяемую или поглощаемую при химических реакциях, нашел, что, «каким бы путем ни совершалось соединение—имело ли место оно непосредственно или происходило косвенным путем в несколько приемов,— количество выделившейся при его образовании теплоты всегда постоянно». Этот принцип Гесс нашел еще в 1836 г. Он обосновал его далее экспериментально и в 1840 г. сформулировал в виде положения: «Когда образуется какое-либо химическое соединение, то при этом всегда выделяется одно и то же количество тепла, независимо от того, происходит ли образование этого соединения непосредственно или же косвенным путем».
Этот термохимический закон Гесса может быть выражен аналитически, если ввести функцию состояния — энтальпию, или тепловую функцию Количество теплоты не является функцией состояния, количество теплоты, выделяемое или поглощаемое при физическом процессе, зависит от характера процесса. Но химическая реакция наблюдается в условиях постоянного давления, и в этом случае, действительно, количество теплоты не зависит от характера перехода и выражается разностью значений энтальпии.
Однако энтальпия была введена в термодинамику значительно позже 1840 г. Термодинамические функции — внутренняя энергия и энтропия — были введены Клаузиусом. В 1869 г. Массье (1832—1896) прибавил к этим функциям две новые, которые он назвал характеристическими. Если обозначить внутреннюю энергию через V, энтропию через S, абсолютную температуру через Т, объем через V, а давление через р, то функции Массье имеют вид:
(-U+TS)/T и (-U+TS-pV)/T.
Массье показал, что из функции такого вида могут быть выведены термодинамические свойства жидкости. Дальнейший шаг был сделан американским физиком Гиббсом.
Джозайя Вилард Гиббс родился 11 февраля 1839 г. в Нью-Гевене, штат Коннектикут, в семье профессора Гейльского университета. В 1866 г. он уехал на три года в Европу, был в Париже, учился в Берлине у Магнуса, в Гейдельберге у Кирхгофа и Гельмгольца и в 1869 г. вернулся в Нью-Гевен, где в 1871 г. получил звание профессора математической физики Иельского университета
Первые работы Гиббса, начиная с его докторской диссертации, были посвящены технической механике. Став профессором, он читал механику, волновую оптику, векторный анализ, теорию электричества и магнетизма. В 1873 г. появились его первые термодинамические работы «Графические методы в термодинамике жидкостей» и «Метод геометрического представления термодинамических свойств веществ при помощи поверхностей».