Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Физика » Физика для всех. Движение. Теплота - Александр Китайгородский

Физика для всех. Движение. Теплота - Александр Китайгородский

Читать онлайн Физика для всех. Движение. Теплота - Александр Китайгородский

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 70 71 72 73 74 75 76 77 78 79
Перейти на страницу:

Формула 1/sqrt(N) показывает, что в одном кубическом сантиметре газа плотность, давление, температура, а также любые другие свойства могут меняться на долю 1/sqrt(3·1019), т.е. примерно в пределах 10−8 %. Такие флуктуации слишком малы, чтобы можно было обнаружить их опытом.

Однако совсем иначе обстоит дело в объеме кубического микрона. Здесь N = 3·107 и флуктуации будут достигать измеримых величин порядка уже сотых долей процента.

Флуктуация представляет собой «ненормальное» явление в том смысле, что она приводит к переходам от более вероятного состояния к менее вероятному. Во время флуктуации тепло переходит от холодного тела к горячему, нарушается равномерное распределение молекул, возникает упорядоченное движение.

Может быть, на этих нарушениях удастся построить вечный двигатель второго рода?

Представим себе, например, крошечную турбинку, находящуюся в разреженном газе. Нельзя ли устроить так, чтобы эта маленькая машина откликалась на все флуктуации какого-либо одного направления? Например, поворачивалась бы, если бы число молекул, летящих вправо, становилось больше числа молекул, движущихся влево. Такие маленькие толчки можно было бы складывать, и в конце концов возникла бы работа. Принцип невозможности вечного двигателя второго рода был бы опровергнут.

Но, увы, подобное устройство принципиально невозможно. Подробное рассмотрение, учитывающее, что турбинка имеет свои собственные флуктуации, тем большие, чем меньше ее размеры, показывает, что флуктуации вообще не могут произвести какую бы то ни было работу. Хотя нарушения стремления к равновесию возникают беспрерывно вокруг нас, они не могут изменить неумолимого хода физических процессов в сторону, увеличивающую вероятность состояния, т.е. энтропию.

Энтропия и развитие вселенной

Реки текут вниз, камни скатываются с горы, движение останавливается из-за трения – прекращаются все относительные движения. Горячие тела остывают, а холодные нагреваются – температуры всех тел мира выравниваются. Таков неотвратимый ход событий в окружающем нас мире с точки зрения закона возрастания энтропии.

Казалось бы, все ясно. Однако, если вдуматься, то в этом есть одна непонятная сторона. Если природа стремится к равновесию, то, спрашивается, почему же равновесие еще не установилось?

Действительно, даже если система предельно неравновесна, то время перехода ее в состояние равновесия (физики называют это время временем релаксации) не может быть бесконечно велико. Переход нашей вселенной к равновесию мог бы длиться долго, пусть многие миллиарды лет, но во всяком случае переход от любого неравновесного состояния к состоянию равновесия занял бы определенный срок, а не длился бы без конца.

Почему же это равновесие не наступило миллиард лет, пусть даже миллиард миллиардов лет назад?

Это противоречие очень серьезно. Получается, что самое существование нашего мира, каким мы его наблюдаем, находится в непримиримом противоречии с известными нам законами физики.

Нельзя ли выйти из затруднения, если допустить, что вся наша вселенная является гигантской флуктуацией? Мир бесконечен во времени и пространстве. То там, то здесь возникает флуктуация – молекулы объединяются, их движение упорядочивается, создается, например, планетная система, подобная нашей. После этого флуктуация рассасывается, исчезает, но взамен ее возникнет в другой части мира другая флуктуация.

Однако как ни заманчива подобная гипотеза, она не выдерживает простой критики. Подобная флуктуация слишком невероятна. Мы видели, что самопроизвольное сгущение молекул в одной половине сосуда размером в кубический сантиметр является одним случаем из колоссального числа. Что же тогда сказать о флуктуации, создавшей видимую вселенную.

Такое объяснение явно не годится. Поверить в его справедливость было бы еще гораздо более наивно, чем поверить клятвенным утверждениям вора, что это не он вытащил у вас кошелек из кармана, а флуктуация молекул привела к переходу кошелька из вашего кармана в его руку. Между тем такая флуктуация в невообразимо огромное число раз более вероятна, чем флуктуация в масштабе вселенной, о которой идет речь.

Можно было бы пытаться возражать следующим образом. Пусть вероятность гигантской флуктуации размером со вселенную ничтожно мала, но это не должно нас удивлять. Ведь я – человек, обсуждающий этот вопрос, – являюсь тоже следствием флуктуации. Уже мое существование – совершенно невероятное происшествие, а о вероятном или невероятном я должен судить по отношению к самому себе.

И это возражение приходится отбросить.

Для нашего существования больше чем достаточно солнечной системы, а мы видим неравновесный мир в масштабе, по сравнению с которым наша солнечная система – мельчайшая частица.

Уже сегодня астрономы при помощи телескопов проникли в глубь вселенной на раcстояния, в 1012−1013 раз превышающие размер солнечной системы. Если вселенная – это флуктуация, значит, мы наблюдаем неравновесные состояния, которые превышают масштаб, нужный для нашей жизни, по крайней мере в 1012 раз. Поэтому наше существование ни в какой степени не оправдывает невообразимо малую вероятность флуктуации, приведшей к образованию вселенной в современном виде.

Таким образом, противоречие остается в полной силе. Это указывает на то, что основные представления о пространстве и времени, а также основные законы, которые мы до сих пор считали несомненными, в чем-то нехороши. Где-то в фундамент науки надо внести поправки.

Мы второй раз сталкиваемся с принципиальными пороками нашей механики. Однако теперь мы нашли в ней новый дефект, не связанный с пересмотром понятий, на необходимость которого мы указали, когда познакомились с необычными свойствами жидкого гелия. Там шла речь о неприменимости законов старой механики к микрочастицам. Теперь мы обнаружили недостатки в фундаменте нашего знания, пытаясь применить его ко всей вселенной.

Наша старая механика оказалась негодной как для очень малого, так и для очень большого.

О том, какие изменения надо внести в наши прежние формулировки законов природы, чтобы их можно было применять в одних нужных случаях к микромиру, а в других ко всей вселенной, мы надеемся поговорить с читателем в дальнейшем.

Примечания

1

В Англии официально приняты следующие меры длины: морская миля (равна 1852 м), простая миля (1609 м), фут (30,5 см); фут равен 12 дюймам, дюйм – 2,54 см; ярд – 0,91 м. Это «портновская» мера, в ярдах принято отмеривать нужное на костюм количество ткани.

Вес в англо-саксонских странах измеряется в фунтах (равен 454 г). Небольшие доли фунта – унция (1/16 фунта) и гран (1/7000 фунта); этими мерами пользуются аптекари при развешивании лекарств. (Здесь и далее – прим. Ландау и Китайгородского.)

2

Эта температура выбрана не случайно. Дело в том, что объем воды изменяется с нагреванием очень своеобразно, не так, как у большинства тел. Обычно при нагревании тела расширяются, а вода при повышении температуры от 0 до 4 °C сжимается и только перевалив за 4° начинает расширяться. Таким образом, 4° – это температура, при которой вода перестает сжиматься и начинает расширяться.

3

О некоторых ограничениях этого утверждения читатель узнает ниже.

4

Здесь и в дальнейшем мы будем жирными буквами обозначать векторы, т.е. характеристики, для которых существенны не только величина, но и направление.

5

Запись «sqrt(n)» в данной книге означает «корень квадратный из n». В бумажной книге напечатан непосредственно радикал, но в электронной версии для совместимости с текстовыми форматами использована такая запись. Sqrt происходит от англ. «square root» и является распространенным обозначением функции взятия квадратного корня в языках программирования. Прим. Sclex.

6

Сам Ньютон указывает, что движение подчиняется трем законам. Тот закон, о котором сейчас идет речь, значится у Ньютона под номером вторым. Первым законом он называл закон инерции, а третьим – закон действия и противодействия.

7

Только практически. В принципе различие есть. На Земле силы тяжести направлены по радиусам к центру Земли. Это значит, что направления ускорения в двух разных точках образуют между собой угол. В ракете, движущейся с ускорением, направления тяжести во всех точках строго параллельны. На Земле ускорение меняется также с высотой; в ускоренно движущейся ракете этого эффекта нет.

8

1 ... 70 71 72 73 74 75 76 77 78 79
Перейти на страницу:
На этой странице вы можете бесплатно скачать Физика для всех. Движение. Теплота - Александр Китайгородский торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉