Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Физика » Удивительная физика - Нурбей Гулиа

Удивительная физика - Нурбей Гулиа

Читать онлайн Удивительная физика - Нурбей Гулиа

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 74 75 76 77 78 79 80 81 82 ... 90
Перейти на страницу:

Установка для плавки металлов в подвешенном состоянии появилась впервые в 1952 г. и выглядела несколько иначе, чем описанная игрушка. Обмотки выполнены в виде верхней плоской и нижней воронкообразной катушек, питаемых током звуковой частоты – около 10 000 Гц. На нижнюю катушку помещали кусочек металла, который необходимо было расплавить, и включали ток. Металл всплывал между катушками и начинал разогреваться (рис. 345). Расплавившись, он принимал форму волчка и опускался. Расплавленный металл можно было, уменьшив ток, охладить, а затем дальнейшим уменьшением тока положить уже в твердом состоянии на нижнюю катушку.

Так плавили алюминий, титан, серебро, золото, индий, олово и другие металлы, причем в атмосфере инертных газов, водорода и в вакууме. Особенно полезна такая плавка для титана, который в расплавленном состоянии легко входит в реакцию с материалом тигля.

Рис. 345. Парение расплавленного металла в электромагнитном поле

Какие это поезда – летающие?

Летающие поезда считаются транспортом XXI в., работы над ними ведутся во всех развитых в техническом отношении странах. А все начиналось в 1910 г., когда бельгиец Э. Башле – простой рабочий-монтер, не получивший никакого специального образования, построил первую в мире модель летающего поезда и испытал ее. Э. Башле упорно работал над осуществлением своей идеи почти 20 лет. Конечно, для перевозки пассажиров его модель была мала, но все-таки произвела ошеломляющее впечатление на современников. Еще бы – 50-килограммовый сигарообразный вагон летающего поезда разгонялся до неслыханной тогда скорости – свыше 500 км/ч!

Магнитная дорога Башле представляла собой цепочку металлических столбиков с укрепленными на их вершинах катушками. Пока тока в этих катушках не было, вагон лежал на них неподвижно. Но после включения тока вагончик приподнимался над катушками и повисал в воздухе. Теперь его мог сдвинуть с места даже ребенок. Но толкать этот вагончик было не нужно – он разгонялся сам, тем же магнитным полем, на котором подвешен.

Летающий вагон Э. Башле вызвал сенсацию во всем мире, его называли чудом XX в. Во Франции решили применять вагончики Э. Башле вместо популярной тогда пневматической городской почты, в Англии собирались строить натурный образец дороги Э. Башле с крупными вагонами. Но потом работы прекратились, и о сенсационных когда-то проектах забыли.

Практически одновременно с Башле – в 1911 г. – профессор Томского технологического института Б. Вейнберг разрабатывает гораздо более экономичную подвеску летающего поезда. В отличие от Э. Башле Вейнберг предлагал не отталкивать дорогу и вагоны друг от друга, что чревато громадными затратами энергии, а притягивать их друг к другу обычными электромагнитами. Разумеется, дорога должна быть расположена сверху от вагона, чтобы своим притяжением компенсировать силу тяжести поезда.

Однако любой магнит, в том числе и электрический, если уж, притягивая, стронул тело с места, то обязательно притянет его к себе до соприкосновения. К счастью, электромагнит можно вовремя выключить, и тело остановится на любом, заранее заданном расстоянии от него.

Но летящий поезд Вейнберга был устроен хитрее. Железный вагон первоначально располагался не точно под электромагнитом, а несколько позади него. При этом электромагниты подвешивались на «потолке» дороги на всей ее длине с некоторым интервалом между ними.

Пуская ток в первый электромагнит, мы вызывали и подъем железного вагончика, и продвижение его вперед, по направлению к магниту. Но за мгновение до того, как вагончик должен был прикоснуться к электромагниту и прилипнуть к нему, ток выключался, и вагончик, продолжая лететь вперед из-за набранной им скорости, начинал снижать высоту. Тут включался следующий электромагнит, и вагончик, попадая в его магнитное поле, опять поднимался вверх, увеличивая скорость движения вперед. Так по волнообразной траектории вагончик «перебегал» от магнита к магниту, не касаясь их (рис. 346).

Рис. 346. Подвеска летающего вагона Б. Вейнберга: 1 – электромагниты; 2 – вагон

Профессор Вейнберг оказался дальновиднее Башле и в другом. Зная о большом сопротивлении воздуха при движении любого тела, в том числе и вагона, с высокими скоростями, изобретатель поместил свой вагон в немагнитную – медную трубу, из которой откачал воздух. И если Башле для снижения сопротивления воздуха, придал своему вагончику сигарообразную обтекаемую форму то для Б. Вейнберга обтекаемость вагончика была ни к чему. Так как внутри трубы воздуха практически не было, отсутствовало и сопротивление, – вагончик имел форму обычного цилиндра. К верхней части трубы крепились электромагниты, которые разгоняли вагончик Б. Вейнберга до скорости 800 км/ч! С такой скоростью летели только снаряды крупнокалиберных короткоствольных пушек – мортир и минометов. Конечно, еще экономичнее было бы использовать вместо электромагнитов сильные постоянные магниты, но вот беда – их нельзя выключать! Поезд неизбежно притянулся бы к потолку и прилип к нему.

Тут в самый раз вспомнить, что наука, техника множество раз вновь и вновь обращалась к старым, казалось бы, уже отжившим решениям. Не зря говорится, что новое – это хорошо забытое старое. Все это в полной мере применимо и к подвесу летающих поездов. Если не хотите, чтобы магнит прилипал к магниту, измените полярность одного из них – и они будут отталкиваться (рис. 347)!

Рис. 347. Отталкивание одноименных полюсов магнитов и есть принцип магнитной подвески

Вот и пришли специалисты по подвесу летающих поездов снова к идее Башле, но вместо электромагнитов переменного тока применили обычные постоянные магниты. Дорогу, над которой должен быть подвешен поезд, вымостили магнитами так, чтобы они были обращены вверх одноименными полюсами. Днище вагона тоже было покрыто магнитами, обращенными вниз также одноименными полюсами, но так, чтобы вагон отталкивался от дороги (рис. 348).

Рис. 348. Вагон, подвешенный на постоянных магнитах:

1 – скользун; 2 – вагон; 3 – магнит вагона; 4 – магнит дороги

Здесь следует соблюдать по меньшей мере два условия: магниты должны быть достаточно сильны, чтобы поднимать вагон над дорогой, а кроме того, вагон не должен сваливаться набок – ведь подвеска на постоянных магнитах, как мы знаем по запрету Ирншоу, нестабильна.

Считается, что при скоростях свыше 500 км/ч обычные колеса применять уже опасно. Специальные колеса из сверхпрочных и легких материалов допускают кратковременное двойное увеличение скорости, например на рекордных гоночных ракетных автомобилях. Но это очень ненадежные колеса, и именно из-за их поломок чаще всего случаются аварии.

Между тем для испытания ракет на земле сплошь и рядом применяют салазки-скользуны, скользящие по направляющим рельсам. Выдерживают они скорость в несколько раз большую, чем скорость звука, правда, при больших потерях энергии – как-никак приходится нести на себе всю тяжесть испытуемых устройств. Скользуны же, предохраняющие вагон на магнитной дороге от падения набок, практически не несут никаких нагрузок, поэтому расход энергии и износ в них ничтожны.

Вернемся к вопросу, – хватит ли сил постоянных магнитов для поддерживания вагона над дорогой. Во времена Гильберта вряд ли получилось бы построить такую дорогу. Но с тех пор возможности постоянных магнитов существенно выросли.

В начале XX в. для постоянных магнитов стали применять хромистые, вольфрамовые и кобальтовые стали, а в 30-х гг. – специальные магнитные сплавы, позволяющие получить очень сильные магниты. Причем совершенно не обязательно, чтобы компоненты этих сплавов были ферромагнетиками. Кажется парадоксальным, но, например, сплав Гейслера, состоящий из двух парамагнетиков (марганца и алюминия) и одного диамагнетика (меди), – сильный ферромагнетик. Или удивительный сплав – сильманал. Он также не содержит ни одного ферромагнетика: марганец, серебро и алюминий. Сильманал дает очень сильные постоянные магниты, причем в отличие от большинства из них он не хрупок. Магниты из сильманала можно обработать на станках, прокатывать из него ленту, изготовлять проволоку.

Но наиболее практичный магнитный сплав – это альнико, состоящий из алюминия, никеля и кобальта, из него и сейчас делают много постоянных магнитов. В 50-е гг. XX в. были получены дешевые и легкие магниты на основе ферритов бария – материала дешевого и очень распространенного в России.

Существуют, правда, магниты – чемпионы по своим свойствам, но они очень дороги. Например, сплав платины с кобальтом позволит получить магнит, способный поднять железный груз, в 2 000 раз больше собственного веса.

Однако более перспективны недавно появившиеся постоянные магниты из редкоземельных материалов самария, неодима и празеодима в их сплаве с кобальтом и железом. Магниты из редкоземельных элементов, например самарий-кобальтовые, обладая силой, не меньшей, чем платино-кобальтовые магниты, гораздо дешевле их. Современные цены на эти магниты всего в несколько раз больше, чем на заурядные, но во сколько раз они сильнее последних!

1 ... 74 75 76 77 78 79 80 81 82 ... 90
Перейти на страницу:
На этой странице вы можете бесплатно скачать Удивительная физика - Нурбей Гулиа торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Аннушка
Аннушка 16.01.2025 - 09:24
Следите за своим здоровьем  книга супер сайт хороший
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...