Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Математика » Десять великих идей науки. Как устроен наш мир. - Питер Эткинз

Десять великих идей науки. Как устроен наш мир. - Питер Эткинз

Читать онлайн Десять великих идей науки. Как устроен наш мир. - Питер Эткинз

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 73 74 75 76 77 78 79 80 81 ... 107
Перейти на страницу:

Мы теперь знаем, что предполагаемая теория великого объединения, обсуждавшаяся в главе 6, устраняет различие между адронами и лептонами, поэтому при достаточно высоких температурах (больше температуры, необходимой для нарушения симметрии, создающего различие между частицами) адроны и лептоны могут превращаться друг в друга. Мы можем представлять себе это превращение как действие сил некоторого вида, которые заставляют адроны становиться лептонами. Эти превращения, будучи силой, обеспечиваются — как и любая сила — путем обмена калибровочными бозонами. Поскольку теория великого объединения в полном оперении еще не сформулирована, у нас немного информации о свойствах этих переносящих силу частиц, и сегодня они называются просто X калибровочными бозонами. Однако мы знаем, что, поскольку X вызывает переход между адроном и лептоном, он сможет распасться на позитрон и анти-d-кварк. Подобным же образом, античастица для X, анти-Х, может распасться на электрон (античастицу позитрона) и d-кварк. Если скорости этих распадов немного различаются, то возникнет небольшой дисбаланс вещества и антивещества, даже если первоначально количества X и анти-Х были равными. Вот где вступает в дело нарушение CP-симметрии, поскольку оно может несколько повысить скорости таких процессов. Мы видели, что нарушение CP-симметрии эквивалентно исчезновению инвариантности относительно обращения времени, в том смысле, что процессы, текущие назад, отличаются от процессов, текущих вперед во времени, и эта кособокость Вселенной во времени действительно зарегистрирована. Теперь считается, что преобладание вещества над антивеществом является проявлением кособокости Вселенной. Почему Вселенная кособока, никто не знает. Возможно, кособока только наша Вселенная, а мультикосмос как целое — если он один — может быть вполне симметричен.

Оставшейся проблемой является причина трехмерности нашего пространства. Первый намек на возможное объяснение начинает возникать из теории струн. Мы подозрительно упорно умалчивали в этой главе о теории струн, если не считать слабого проблеска ее присутствия в сносках, главным образом потому, что она все еще так спекулятивна. Однако существуют некоторые указания на то, что теория струн приложима к очень ранним стадиям появления Вселенной — как оно и должно быть, если это фундаментальная теория вещества — и что в самый ранний момент Вселенной произошел не взрыв частиц, а взрыв струн: взрыв спагетти, а не манной крупы. Например, мы видели, что в очень ранние времена, а значит, при очень высокой температуре, перед тем как произошло нарушение симметрии, все силы имели одинаковый уровень. Но это не вполне верно, поскольку оказывается, что если вычисления проделаны тщательно, то уровни гравитационного, сильного и электрослабого взаимодействий в очень ранней Вселенной, в первое тиканье планковских часов, не вполне совпадают (рис. 8.11). Однако, когда в игру вступает теория струн, это малое расхождение удаляется, и силы в момент их рождения оказываются в точности равными.

Рис. 8.11. В главе 6 мы видели, что фундаментальные силы сходятся к общей величине, когда мы подходим к моменту (и температуре) Большого Взрыва. Это не вполне верно, поскольку в течение очень короткого времени между ними имеется небольшое различие. Если обратиться к теории струн, это расхождение, по-видимому, исчезает.

Мы видели, что одной из очаровательных черт теории струн является то, что она предполагает существование у Вселенной десяти измерений (одиннадцати, включая время), но семь из них свернуты в пространства Калаби-Яу, со струнами, продетыми в многомерные дырки этих пространств. Мы можем представлять себе струны намотанными в одном направлении, а антиструны намотанными в противоположном направлении. Когда струна и антиструна встречаются, они аннигилируют, поэтому мы можем нарисовать себе десятимерное пространство с извивающимися струнами и антиструнами, аннигилирующими при встрече. Там где встречи не происходит, струны удерживают пространство от развертывания, так же как реальные струны, закрученные вокруг бумажной трубки.

Теперь нам нужны дальнейшие факты. В одномерном пространстве, похожем на перекладину счетов, точка и ее антиматериальный двойник, другая точка, почти наверняка встретятся и аннигилируют, если только они не движутся с одинаковой скоростью в одном направлении. В двух измерениях, как на бильярдном столе, встреча двух точек гораздо менее вероятна (рис. 8.12).

Рис. 8.12. Две частицы в одномерной области — как две бусины на нитке (верхняя иллюстрация) — обязательно встретятся, если только они не движутся с одинаковой скоростью. В двумерной области — как у бильярдных шаров на бильярдном столе (нижняя диаграмма) — шансы их встречи сильно уменьшаются.

 Когда вместо точек мы пытаемся представить себе встречу струны и антиструны, оказывается, что они скорее всего встретятся при условии, что размерность пространства не более чем три. Это предполагает — и это на данной стадии не более чем интригующее предположение, — что струны и антиструны, которые можно представлять себе удерживающими в свернутом состоянии три размерности, вероятно, аннигилируют друг с другом и освобождают соответствующие размерности, давая им возможность развернуться (рис. 8.13). То есть три размерности разворачиваются, и разворачиваются, прежде чем у оставшихся размерностей будет время сделать то же самое, Вселенная переходит к следующей фазе своего развития, возможно, к раздуванию, оставляя семь размерностей в капкане навсегда.

Рис. 8.13. Две струны, струна и антиструна, движущиеся вдоль свернутого измерения, встретятся и аннигилируют, давая возможность измерению развернуться. В теории струн существует указание на то, что струны имеют много шансов для встречи в трех измерениях, подобно точечным частицам в размерности один. Оставшиеся измерения пойманы, так что лишь три измерения разворачиваются, чтобы образовать размерность нашей знакомой Вселенной.

О прошлом сказано много, а как насчет будущего? Я уделю внимание нашему предположительно бесконечному будущему в меньшей степени, чем нашему, по-видимому, конечному прошлому. По общему согласию будущее у нас есть, довольно длинное будущее, если мы готовы туда идти. В качестве исходной точки я возьму предположение, что Вселенная не является замкнутой, поэтому в будущем не ожидается схлопывания: Вселенная бесконечна сегодня, и ее масштаб будет увеличиваться всегда. Это, по-видимому, общепринятая среди космологов точка зрения. Всегда существует возможность, что они не правы, в этом случае Вселенная сегодня конечна и закончится Большим Хлопком, возможно, через несколько триллионов лет.

Вселенная, похоже, не только будет всегда расширяться, но существуют накапливающиеся свидетельства того, что ее расширение ускоряется. Это открытие потрясло мир космологии, поскольку его следствия для Вселенной фундаментальны. Нам следует вспомнить, что Хаббл использовал цефеиды для определения расстояния до галактик. Альтернативным подходом является использование в качестве стандартного светильника сверхновой типа Iа. Сверхновая типа Iа образуется, когда белый карлик, звезда с массой, приблизительно равной массе Солнца, но размером с Землю, в тесной двойной системе обрастает веществом, получаемым от соседа, в количестве, достаточном для запуска разгоняющейся ядерной реакции. В отличие от сверхновых типа II (коллапс ядра), которые мы обсуждали ранее, сверхновые типа Iа в высокой степени однородны по интенсивности. Поэтому, так же как переменные цефеиды, они действуют как стандартные светильники, и мы можем использовать их воспринимаемые интенсивности, чтобы судить о расстоянии до них. Их преимущество состоит в том, что сверхновые намного ярче цефеид, поэтому их можно использовать для изучения гораздо более удаленных объектов.

В 1998 г. было обнаружено, что количество удаленных сверхновых типа Iа оказывается меньше, чем было бы, если бы расширение Вселенной замедлялось или даже просто продолжалось с постоянной скоростью. Если это свидетельство подтверждается, то должен существовать вклад в энергию, приписываемую вакууму, похожий, скорее, на существовавший в эру раздувания, но сегодня гораздо меньший по величине. Этот вклад, называемый космологической постоянной, впервые ввел Эйнштейн, чтобы уравновесить гравитационное тяготение и остановить сжатие Вселенной, а затем, когда узнал о результатах Хаббла, отказался от него, как от «своего величайшего просчета». Теперь становится ясно, что признание Эйнштейном «своего величайшего просчета», оказывается было даже более великим просчетом. Таинственная энергия, ответственная за это ускорение, называется темной энергией, или, с большей долей воображения, иронически вторя Аристотелю, квинтэссенцией. Один из возможных сценариев, вытекающих из неравенства космологической постоянной нулю, состоит в том, что новая эра раздувания уже началась и что ускорение расширения Вселенной будет должным образом — около миллиона триллионов триллионов лет (1030 лет), или что-то в этом роде — возрастать до невероятных размеров. Если это так, нам придется испытать внезапное погружение в почти абсолютное одиночество, когда в поле зрения останутся лишь исчезающие вдали остатки нашей Галактики с Андромедой. Я буду считать, что эта фаза экспоненциально быстрого расширения не настанет раньше, чем смогут произойти другие события, но гарантии, без сомнения, нет.

1 ... 73 74 75 76 77 78 79 80 81 ... 107
Перейти на страницу:
На этой странице вы можете бесплатно скачать Десять великих идей науки. Как устроен наш мир. - Питер Эткинз торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...