Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Математика » Математика. Утрата определенности. - Морис Клайн

Математика. Утрата определенности. - Морис Клайн

Читать онлайн Математика. Утрата определенности. - Морис Клайн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 73 74 75 76 77 78 79 80 81 ... 140
Перейти на страницу:

Другой гранью проблемы существования был смысл доказательств существования. Например, Гаусс доказал, что любое алгебраическое уравнение n-й степени с вещественными или комплексными коэффициентами имеет по крайней мере один (комплексный, а может, и вещественный) корень. Но из приведенного Гауссом доказательства не было ясно, каким образом можно вычислить этот корень. Аналогично Кантор доказал, что вещественных чисел больше, чем алгебраических (корней алгебраических уравнений с целыми коэффициентами). Следовательно, должны существовать трансцендентные иррациональные числа, не являющиеся алгебраическими. Но такое доказательство существования не позволяло назвать и тем более вычислить хотя бы одно трансцендентное число. Некоторые математики начала XX в. (Борель, Бэр, Лебег) считали чистые доказательства существования бессмысленными. По их мнению, доказательство существования должно позволять математикам вычислять существующие величины с любой степенью точности. Такие доказательства существования получили название конструктивных.

Некоторых математиков беспокоило еще одно обстоятельство. Аксиоматизация математики была осуществлена как формальный ответ на интуитивное принятие многих очевидных фактов. Правда, аксиоматизация помогла избавиться от противоречий и неясностей, в частности в математическом анализе. Но сторонники аксиоматизации настаивали также на явных определениях, формулировках аксиом и доказательствах того, что было очевидно на интуитивном уровне — настолько очевидно, что прежде никто даже не осознавал, в какой мере те или иные рассуждения опираются на интуицию (гл. VIII). Возникшие в результате аксиоматизации дедуктивные построения оказались весьма сложными и громоздкими. Так, построение теории рациональных и в особенности иррациональных чисел на основе аксиоматики целых чисел изобиловало множеством деталей и отличалось большой сложностью. Все это вызывало тягостное чувство у некоторых математиков, в частности у Леопольда Кронекера (1823-1891), считавшего все эти новомодные теории излишне сложными и искусственными. Кронекер первым из выдающихся математиков своего времени пришел к заключению, что с помощью логических средств невозможно создать разумную теорию, выходящую за рамки интуиции, подсказываемой здравым смыслом.

Другим камнем преткновения стала математическая логика, бурное развитие и все расширяющиеся границы которой заставили математиков осознать, что обращение к законам логики не может оставаться неформальным и осуществляться лишь от случая к случаю. Работы Пеано и Фреге показали математикам необходимость тонко различать понятия, используемые в математических рассуждениях, например проводить различия между элементом, принадлежащим какому-то классу, и классом, входящим в другой класс.{107} Проведение такого рода различий современники Фреге считали чрезмерным педантизмом. По их мнению, эти различия скорее затрудняли, чем облегчали, работу математика.

Гораздо более важным было то, что многие математики начали сомневаться в неограниченной применимости принципов логики, хотя в конце XIX в. эти сомнения еще никто не высказывал явно. Что гарантирует применимость принципов логики к бесконечным множествам? Если принципы логики есть продукт человеческого опыта, то нельзя не спросить, распространяются ли они на те чисто рациональные построения, которые не имеют опытной основы.

Разногласия между математиками по поводу затронутых нами проблем начались задолго до наступления XX в. Новые парадоксы лишь усугубили уже существовавшие расхождения в мнениях. Через многие годы математики с тоской вспомнят о коротком, но счастливом периоде, предшествовавшем появлению противоречий, — периоде, о котором Поль Дюбуа-Реймон отозвался как о времени, когда математики «еще жили в раю».

X

Логицизм против интуиционизма

Логистика не бесплодна, она порождает антиномии.{108}

Анри Пуанкаре

Открытие парадоксов теории множеств и осознание того, что аналогичные парадоксы могут встретиться и в уже существующей классической математике (хотя пока они и не обнаружены), заставили математиков всерьез заняться проблемой непротиворечивости. Весьма насущным вдруг стал вопрос о том, какой смысл имеет в математике глагол «существовать», поднятый, в частности, в связи с вольным использованием аксиомы выбора. Все более широкое применение бесконечных множеств при перестройке оснований математики и создании ее новых разделов вновь оживило старые разногласия по поводу законности использования актуально бесконечных величин и множеств. Начавшееся в конце XIX в. движение за аксиоматизацию математики все эти кардинальные проблемы просто оставляло в стороне.

Но сколь ни важны были эти и другие вопросы, которых мы коснулись в предыдущей главе, не только они привели к пересмотру оснований собственно математики. Проблемы, о которых идет речь, подобно ветру, раздули тлевшие угли и заставили их вспыхнуть ярким пламенем. Еще до начала XX в. было провозглашено и даже разработано несколько радикально новых подходов к математике. Но поскольку они до времени оставались в тени, большинство математиков не восприняли их всерьез. Однако в первые десятилетия XX в. в битву за новые подходы к математике вступили гиганты. Они разделились на враждующие лагери и вступили в открытое противоборство.

Одно из направлений получило название «логистическая школа». Если не вдаваться в подробности, то основной тезис логицистов сводился к утверждению, что математика полностью может быть выведена из логики. В начале XX в. большинство математиков видели в законах логики незыблемые, вечные истины. Но если законы логики истинны, рассуждали логицисты, то истинна и математика. А поскольку истина непротиворечива, продолжали они, то математика также должна быть непротиворечивой.

Как и обычно, когда речь идет о создании нового большого направления в науке, прежде чем логистика обрела строгую форму и привлекла широкое внимание, потребовались значительные усилия многих ученых. Мысль о том, что математика выводима из логики, восходит по меньшей мере к Лейбницу. Лейбниц различал истины основания (или необходимые истины) и истины факта (или случайные истины) (гл. VIII). Суть этого различия он пояснил в письме к своему другу Косте. Истина именуется необходимой, если противоположное утверждение приводит к противоречию. Если же истина не является необходимой, то она называется случайной. Утверждения о том, что бог существует{109}, что все прямые углы равны между собой и т.д., — необходимые истины. Утверждения о том, что я сам существую, или о том, что в природе встречаются тела, в которых можно указать углы, в точности равные 90°, — случайные истины. Эти утверждения могут быть как истинными, так и ложными — и в том и в другом случае Вселенная не перестанет существовать. Господь бог, по мнению Лейбница, выбрал из бесконечно многих возможностей ту, которую счел наиболее подходящей. Поскольку математические истины необходимы, они должны быть выводимы из логики, принципы которой также необходимы и незыблемо истинны во всех возможных мирах.

Лейбниц не осуществил программу вывода математики из логики, как не осуществили ее в течение последующих почти двухсот лет все те, кто высказывал аналогичные убеждения. Так, Рихард Дедекинд голословно утверждал, что число невыводимо из интуитивных представлений о пространстве и времени, а является «непосредственной эманацией законов чистого разума». По мнению Дедекинда, из числа мы выводим точные понятия пространства и времени. Дедекинд начал развивать свой тезис, но не особенно преуспел в этом [47].

Наконец, за осуществление основного тезиса логицизма принялся находившийся под влиянием идей Дедекинда Готлоб Фреге, который внес немалый вклад в развитие математической логики (гл. VIII). Фреге относил математические законы к числу так называемых аналитических суждений. Такие суждения утверждают не более того, что неявно заложено в принципах логики, являющихся априорными истинами. Математические теоремы и их доказательства позволяют нам выявить это неявное. Не вся математика применима к реальному миру, но вся математика заведомо состоит из необходимых истин. Построив в своей работе «Исчисление понятий» (1879) логику на основе явно сформулированных аксиом, Фреге в «Основаниях арифметики» (1884) и в двухтомном сочинении «Основные законы арифметики» (1893-1903) приступил к выводу из логических посылок арифметических понятий, определений и правил. В свою очередь из законов арифметики можно вывести алгебру, математический анализ и даже геометрию, так как аналитическая геометрия позволяет выразить геометрические понятия и свойства геометрических фигур на языке алгебры. К сожалению, символика Фреге была чрезвычайно сложной и непривычной для математиков, в силу чего работы Фреге оказали слабое влияние на современников. Известна история о том, что как раз в то время, когда Фреге завершил работу над вторым томом «Основных законов арифметики» (1902), он получил (такова ирония судьбы!) письмо от Бертрана Рассела. В этом письме Рассел писал, что, к сожалению, Фреге использовал в своем труде понятие (множество всех множеств), применение которого недопустимо, ибо оно приводит к противоречию. В конце второго тома Фреге отметил: «Вряд ли с ученым может приключиться что-нибудь худшее, чем если у него из-под ног выбьют почву в тот самый момент, когда он завершит свой труд. Именно в таком положении оказался я, получив письмо от Бертрана Рассела, когда моя работа уже была почти закончена». Фреге ничего не знал о парадоксах, обнаруженных за то время, пока он писал свою книгу.

1 ... 73 74 75 76 77 78 79 80 81 ... 140
Перейти на страницу:
На этой странице вы можете бесплатно скачать Математика. Утрата определенности. - Морис Клайн торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉