SETI: Поиск Внеземного Разума - Лев Миронович Гиндилис
Шрифт:
Интервал:
Закладка:
Выше речь шла о плотности вещества и излучения. Что касается отношения числа фотонов к числу частиц вещества, то, поскольку концентрация и тех и других с расширением Вселенной падает как а-3, отношение nфот/nнукл со временем не меняется и равно 109. Возникает вопрос — почему это отношение столь велико? Ведь, если в горячей Вселенной на раннем этапе все частицы находились в равновесии, то число частиц разного типа должно было быть примерно равным. Но как только мы задумываемся над этим вопросом, возникает другой, гораздо более важный вопрос — а почему, вообще, существует вещество в нашей Вселенной? Ведь если когда-то все частицы находились в равновесии, то число частиц должно было равняться числу античастиц. Почему же тогда образовалось только вещество, куда делось антивещество? Конечно, для нас это обстоятельство весьма благоприятно, ибо если бы во Вселенной существовало в равных количествах вещество и антивещество, то в какой-то момент оно должно было аннигилировать, и тогда весь Мир состоял бы только из излучения. Разгадка этих проблем, как оказалось, кроется в самых ранних этапах эволюции Вселенной, когда после сингулярности прошли ничтожные доли секунды.
Как близко можно подойти к сингулярности, двигаясь назад во времени, и как определить условия в ранней Вселенной? Теория горячей Вселенной дает простые соотношения для масштабного фактора, плотности и температуры в любой момент времени для ранней Вселенной:
или:
Здесь t — время в секундах, отсчитываемое от сингулярности, t0 — современный момент времени.
В своей замечательной книге «Первые три минуты»[138], изданной в 1977 г., С. Вайнберг начинает историю Вселенной с момента t = 0,01 с, когда температура составляла 1011 К (в 10 тыс. раз выше, чем в недрах Солнца). Современные космологи идут гораздо дальше, они начинают с момента t = 3 • 10-44с. Это так называемое планковское время. Дальше к сингулярности двигаться уже невозможно, ибо здесь начинают сказываться квантовые эффекты, и привычное нам понятие времени теряет смысл. Мы начнем описание истории горячей Вселенной с момента t = 10-34с; более ранний период будет рассмотрен в следующем пункте.
При t = 10-34 с температура составляла 1027 К, радиус Метагалактики равнялся 30 см (!), а плотность составляла 1074 г/см3. Температуру Т = 1027 К называют температурой великого объединения, ибо при этой температуре стирается различие между тремя видами физических взаимодействий — электромагнитным, сильным и слабым. Существует Единое физическое взаимодействие, проявлением которого при меньшей температуре является электрослабое и сильное взаимодействие. Но здесь нам придется сделать небольшой экскурс в физику элементарных частиц.
Все многообразие физических сил и взаимодействий, существующих в природе, сводится к четырем основным взаимодействиям: гравитационному, электромагнитному, слабому и сильному. Гравитационное взаимодействие — сила всемирного тяготения действует на все тела и частицы. По сравнению с другими взаимодействиями, оно очень слабо и в мире элементарных частиц практически не сказывается. Тяготение становится заметным на больших расстояниях и для тел достаточно большой массы. Электромагнитные силы определяют взаимодействие между заряженными частицами. Было время, когда электрические и магнитные явления, известные с незапамятных времен, рассматривались как совершенно независимые. Но затем была установлена тесная взаимосвязь между ними: движение электрических зарядов порождает магнитное поле, а изменение магнитного поля создает электрический ток. В теории Максвелла электрические и магнитные явления были объединены в единое электромагнитное взаимодействие. Слабые взаимодействия характеризуют все типы процессов с элементарными частицами, в которых принимают участие нейтрино. Они, в частности, ответственны за распад нейтрона и, следовательно, за процессы радиоактивного распада. В отличие от гравитационного и электромагнитного взаимодействий, которые изменяют только внешнее состояние движения частиц, слабое взаимодействие меняет внутреннюю природу самих частиц (например, нейтрон превращается в протон, электрон и нейтрино). В обычных условиях слабое взаимодействие