Лестница жизни: десять величайших изобретений эволюции - Ник Лэйн
Шрифт:
Интервал:
Закладка:
Разумеется, если у этого общего предка позвоночных и беспозвоночных были оба типа светочувствительных клеток, то мы тоже вполне могли унаследовать клетки обоих типов, у нас тоже можно найти и клетки другого типа (конечно, если знать, где искать). Похоже, что так и есть. В том же году, когда живые ископаемые открыли ученым свою тайну, Сатчин Панда и его коллеги из Института Солка в Сан-Диего попытались проверить свои подозрения относительно некоторых клеток человеческого глаза - ганглионарных клеток сетчатки, влияющих на наш суточный ритм. Хотя эти клетки и не специализируются на регистрации света, в них тоже содержится родопсин. Он представлен необычной формой — так называемым меланопсином, которая, как выяснилось, характерна для светочувствительных клеток беспозвоночных. Весьма примечательно, что этот связанный с суточным ритмом родопсин наших глаз по структуре ближе к родопсину участков голой сетчатки креветок, живущих у “черных курильщиков”, чем к другому типу родопсина, работающему вместе с ним в человеческой сетчатке.
Это означает, что светочувствительные клетки позвоночных и беспозвоночных появились из одного и того же источника. Это не два разных изобретения, а сестринские клетки, у которых была общая праматерь. И эта праматерь, первичная светочувствительная клетка, прародительница глаз всех животных, возникла в ходе эволюции лишь однажды.
Складывается следующая картина. У общих предков позвоночных и беспозвоночных развились светочувствительные клетки одного типа, содержащие зрительный пигмент родопсин и формирующиеся под управлением небольшого комитета из генов. Впоследствии эти светочувствительные клетки разделились на два типа, которые стали специализироваться либо на зрении, либо на суточном ритме. По неизвестным причинам (может быть, случайно) клетки этих двух типов у позвоночных и у беспозвоночных выбрали для специализации противоположные функции, так что глаза у тех и у других развивались на основе разных тканей. Это обусловило принципиальные различия в эмбриональном развитии глаз между такими представителями позвоночных и беспозвоночных, как человек и осьминог. Первой остановкой на пути к высокоразвитому глазу стала голая сетчатка — слой светочувствительных клеток одного или другого типа, в зависимости от эволюционной линии. У некоторых организмов сохранились простые, плоские участки голой сетчатки, в то время как у других эти участки прогнулись, и сетчатка погрузилась в ямки, так что на нее теперь могла падать тень, позволяя определять, откуда идет свет. Когда эти ямки стали достаточно глубокими, на их работе начала сказываться обратная зависимость между чувствительностью и разрешением, означавшая, что любой хрусталик лучше, чем никакого, и для выполнения функций хрусталика были собраны подвернувшиеся материалы, от минералов до ферментов. Сходные процессы имели место в различных эволюционных линиях, породив неразбериху. Но оптические законы позволяют построить лишь несколько принципиальных разновидностей функциональных глаз, что накладывало ограничения на пути их развития. Поэтому все сложившееся на молекулярном уровне разнообразие на макроскопическом уровне свелось к немногим принципиальным структурам: от наших собственных глаз, устроенных по типу фотоаппарата, до фасеточных глаз насекомых.
Разумеется, многие подробности здесь опущены, но в общих чертах эволюция глаза именно такова. Неудивительно, что у нас и у креветок, живущих на “черных курильщиках”, один и тот же родопсин: мы все унаследовали его от одного и того же древнего предка. Но у нас по-прежнему остается еще один вопрос: кем был этот предок? Ответ нам дают тоже гены.
Когда Синди Ван Довер спускалась к “черным курильщикам”, ее неотступно преследовала мысль о свете. Креветки, которых она изучала, судя по всему, отлично улавливали зеленый свет с помощью родопсина, похожего на человеческий. При этом имевшиеся тогда измерения показывали, что “черные курильщики” не светятся зеленым. В чем же дело?
Один выдающийся исследователь в выступлении, посвященном своему уходу на пенсию, дал молодым ученым шуточный совет: ни в коем случае не пытаться повторить успешный эксперимент, потому что результаты таких попыток неизменно приносят горькое разочарование[59]. Не так уж очевидно, что может быть верно и обратное (всегда без колебаний повторять неудавшиеся эксперименты), но у Синди Ван Довер были все основания попробовать. Родопсины, как и покойники, не лгут. Синди Ван Довер рассуждала так: если родопсин креветок поглощает зеленый свет, значит, там должен быть зеленый свет. Оставалось предположить, что примитивное оборудование, использованное для первых измерений, было не так чувствительно, как голая сетчатка креветок.
Был заказан новый, намного более совершенный фотометр, спроектированный учеными из НАСА, знавшими все о регистрации излучений в черноте космического пространства. Этот прибор назывался ALIS5 (Ambient Light Imaging and Spectral System — “система визуализации и спектрометрии окружающего света”), и он действительно позволил зарегистрировать свет с другими длинами волн. С помощью ALISS в стране чудес “черных курильщиков” удалось выявить небольшой пик в зеленой части спектра, где интенсивность света была на несколько порядков выше, чем предсказывала теория. Результаты новых измерений вскоре подтвердились и на других полях “черных курильщиков”. Хотя источник этого мистического света по-прежнему остается загадкой, нет недостатка в остроумных гипотезах. Одна из них предполагает, что видимый свет могут испускать выходящие из гидротермальных источников пузырьки газа, сжимаемые высоким давлением воды, подобно тому, как это может происходить при образовании и разрушении кристаллов под высоким давлением при высокой температуре.
Синди Ван Довер не зря верила в родопсин: она знала, что что-то тут не так. У родопсинов есть удивительная способность соответствовать условиям окружающей среды. Море не зря называют синим: этот свет проходит сквозь воду дальше, чем свет с другими длинами волн. Море быстро поглощает красный свет, и он не может проникать глубоко под воду. Желтый заходит немного глубже, оранжевый — еще глубже. Но начиная с глубины около двадцати метров под водой остается в основном зеленый, голубой и синий свет, и чем глубже, тем больше доля синего. Этот свет рассеивается в воде, на больших глубинах окрашивая все в разные опенки синего. Родопсины рыб прекрасно отслеживают этот сдвиг в