5a. Электричество и магнетизм - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Когда же нам понадобится потенциал этого распределения, то брать интегралы не нужно. Мы знаем, что потенциал каждого заряженного шара —- в точках вне его— совпадает с потенциалом точечного заряда. А два смещенных шара — все равно, что два точечных заряда; значит, искомый потенциал и есть как раз потенциал диполя.
Фиг. 6,6. Две равномерно заряженные сферы, вложенные друг в друга и слегка смещенные, эквивалентны неоднородному распределению
поверхностного заряда.
Таким путем можно показать, что распределение зарядов на сфере радиуса а с поверхностной плотностью
создает снаружи сферы такое же поле, как и диполь с моментом
Можно также показать, что внутри сферы поле постоянно и равно
Если q — угол с положительной осью z, то электрическое поле внутри сферы направлено по отрицательной оси z. Рассмотренный нами пример отнюдь не досужая выдумка составителя задач; он нам встретится еще в теории диэлектриков.
§ 5. Дипольное приближение для произвольного распределения
Столь же интересно и не менее важно поле диполя, возникающее при других обстоятельствах. Пусть у нас есть тело со сложным распределением заряда, скажем, как у молекулы воды (см. фиг. 6.2), а нас интересует только поле вдали от него. Мы покажем, что можно получить сравнительно простое выражение для полей, пригодное для расстояний, много больших, чем размеры тела.
Мы можем смотреть на это тело, как на скопление точечных зарядов qiв некоторой ограниченной области (фиг. 6.7). (Позже, если понадобится, мы qiзаменим на pdV.) Пускай заряд qiудален от начала координат, выбранного где-то внутри группы зарядов, на расстояние di . Чему равен потенциал в точке Р, расположенной где-то на отлете, на расстоянии R, много большем, чем самое большое из di,? Потенциал всего нашего скопления выражается формулой
(6.21)
где ri — расстояние от Р до заряда qi(длина вектора R-di). Если расстояние от зарядов до Р (до точки наблюдения) чрезвычайно велико, то каждое из ri можно принять за R. Каждый член в сумме станет равным qi/R, и 1IR можно будет вынести из-под знака суммы. Получится простой результат
(6.22)
где Q — суммарный заряд тела. Таким образом, мы убедились, что из точек, достаточно удаленных от скопления зарядов, оно кажется просто точечным зарядом. Этот результат в общем не очень удивителен.
Но что, если положительных и отрицательных зарядов в группе окажется поровну? Суммарный заряд Q тогда будет равен нулю. Это не такой уж редкий случай; мы знаем, что большинство тел нейтрально. Нейтральна молекула воды, но заряды в ней размещаются отнюдь не в одной точке, так что, приблизившись вплотную, мы должны будем заметить какие-то признаки того, что заряды разделены. Для потенциала произвольного распределения зарядов в нейтральном теле мы нуждаемся в приближении, лучшем, чем даваемое формулой (6.22). Уравнение (6.21) по-прежнему годится, но полагать ri=R больше нельзя. Для ri нужно выражение поточнее. В хорошем приближении ri можно считать отличающимся от R (если точка Р сильно удалена) на проекцию вектора d на вектор R (см. фиг. 6.7, но вы должны только представлять себе, что Р намного дальше, чем показано). Иными словами, если er — единичный вектор в направлении R, то за следующее приближение к riнужно принять
(6.23)
Но нам ведь нужно не ri, а 1/ri; оно в нашем приближении (с учетом di<<R) равно
(6.24)
Подставив это в (6.21), мы увидим, что потенциал равен
(6.25)
Многоточие указывает члены высшего порядка по d/R, которыми мы пренебрегли. Как и те члены, которые мы выписали, это последующие члены разложения 1/riв ряд Тэйлора в окрестности 1/R по степеням di/R,
Первый член в (6.25) мы уже получили; в нейтральных телах он пропадает. Второй член, как и у диполя, зависит от 1/R2. Действительно, если мы определим
(6.26)
как величину, описывающую распределения зарядов, то второй член потенциала (6.25) обратится в
(6.27)
т. е. как раз в дипольный потенциал. Величина р называется дипольным моментом распределения. Это обобщение нашего прежнего определения; оно сводится к нему в частном случае точечных зарядов.
В итоге мы выяснили, что достаточно далеко от любого набора зарядов потенциал оказывается дипольным, лишь бы этот набор был в целом нейтральным. Он убывает, как 1/R2, и меняется, как cos 0, а величина его зависит от дипольного момента распределения зарядов. Именно по этой причине поля диполей и важны; сами же по себе пары точечных зарядов встречаются крайне редко.
У молекулы воды, например, дипольный момент довольно велик. Электрическое поле, создаваемое этим моментом, ответственно за некоторые важные свойства воды. А у многих молекул, скажем у СO2, дипольный момент исчезает благодаря их симметрии. Для таких молекул разложение нужно проводить еще точнее, до следующих членов потенциала, убывающих как 1/R3 и называемых квадрупольным потенциалом. Эти случаи мы рассмотрим позже.
§ 6. Поля заряженных проводников
Мы покончим на этом с примерами таких физических задач, в которых распределение зарядов известно с самого начала. Такие задачи решаются без особых затруднений, в худшем случае требуя нескольких интегрирований. Теперь мы обратимся
к совершенно новому типу задач — определению полей вблизи заряженных проводников.
Представим себе, что какие-то заряды, произвольные по величине Q, помещены на проводнике. Теперь уже мы не можем точно сказать, где они расположатся. Они как-то растекутся по поверхности. Как же узнать, как они на ней распределятся? Распределиться они должны так, чтобы потенциал вдоль всей поверхности был одним и тем же. Если бы поверхность не была эквипотенциальной, то внутри проводника существовало бы электрическое поле и заряды вынуждены были бы двигаться до тех пор, пока поле не исчезло бы. Общую задачу такого рода можно было бы решать так. Предположим, что распределение зарядов такое-то, и рассчитаем потенциал. Если он оказывается на поверхности повсюду одинаковым, то задача решена. Если же поверхность не эквипотенциальна, то значит, мы сделали неправильное предположение о распределении зарядов; сделаем новое предположение и постараемся, чтобы оно было удачнее! Так может продолжаться без конца, разве что вы здорово набьете руку на таких пробах.
Вопрос о том, как догадываться о распределениях, математически труден. Конечно, у природы есть время решать его; заряды притягиваются и отталкиваются до тех пор, пока не уравновесятся взаимно. А когда мы пробуем решить задачу, то каждая проба занимает так много времени, что этот метод оказывается очень громоздким. Когда имеется произвольный сложный набор проводников и зарядов, задача весьма усложняется, и в общем случае не может быть решена без специально разработанных численных методов. Такие численные расчеты в наши дни выполняются на счетных машинах, которые могут все посчитать за нас, если мы им объясним, как это сделать.
С другой стороны, имеется множество мелких практических случаев, в которых, к нашему удовольствию, удается добиться решения каким-то прямым методом, не составляя программы для машины. На наше счастье, во многих случаях с помощью того или иного фокуса можно выжать ответ из природы.
Первый такой фокус, который мы хотим вам показать, состоит в использовании уже известных решений задач с фиксированным расположением зарядов.
§ 7. Метод изображений
Мы определили поле двух точечных зарядов. На фиг. 6.8 показаны некоторые линии поля и эквипотенциальные поверхности, полученные из расчетов, приведенных в гл. 5. Рассмотрим теперь эквипотенциальную поверхность А. Предположим, что мы изогнули тонкий лист металла так, что он в точности