Категории
Самые читаемые книги
ЧитаемОнлайн » Справочная литература » Энциклопедии » 100 великих научных открытий - Д Самин

100 великих научных открытий - Д Самин

Читать онлайн 100 великих научных открытий - Д Самин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 64 65 66 67 68 69 70 71 72 ... 129
Перейти на страницу:

«Exposition» не дошло до нас. Первое печатное сочинение Лобачевского, которое он называет извлечением из «Exposition», печаталось в «Казанском вестнике» в 1829–1830 годах. Эта дата устанавливает приоритет опубликования открытия Лобачевского сравнительно с И. Болиаи, так как «Appendix» последнего был напечатан в 1831 году, а вышел из печати только в 1832 году. Как показывает заглавие «Exposition», оно имело своим предметом не только точную теорию параллельных линий, но посвящено было вместе с тем вопросу о началах геометрии.

Хотя и И. Болиаи, и Лобачевский за это открытие были избраны членами Ганноверской академии наук, права гражданства получила в Западной Европе именно геометрия Лобачевского.

В 1837 году труды Лобачевского печатаются на французском языке. В 1840 году он издал на немецком языке свою теорию параллельных, заслужившую признание великого Гаусса. В России же Лобачевский не видел оценки своих научных трудов.

Очевидно, исследования Лобачевского находились за пределами понимания его современников. Одни игнорировали его, другие встречали его труды грубыми насмешками и даже бранью. В то время как наш другой высокоталантливый математик Остроградский пользовался заслуженной известностью, никто не знал Лобачевского; к нему и сам Остроградский относился то насмешливо, то враждебно.

Совершенно правильно или, вернее, основательно один геометр назвал геометрию Лобачевского звездной геометрией. О бесконечных же расстояниях можно составить себе понятие, если вспомнить, что существуют звезды, от которых свет доходит до Земли тысячи лет. Итак, геометрия Лобачевского включает в себя геометрию Евклида не как частный, а как особый случай. В этом смысле первую можно назвать обобщением геометрии нам известной. Теперь возникает вопрос, принадлежит ли Лобачевскому изобретение четвертого измерения? Нисколько. Геометрия четырех и многих измерений создана была немецким математиком, учеником Гаусса, Риманом. Изучение свойств пространств в общем виде составляет теперь неевклидову геометрию, или геометрию Лобачевского. Пространство Лобачевского есть пространство трех измерений, отличающееся от нашего тем, что в нем не имеет места постулат Евклида. Свойства этого пространства в настоящее время уясняются при допущении четвертого измерения. Но этот шаг принадлежит уже последователям Лобачевского.

Естественно возникает вопрос, где же находится такое пространство. Ответ на него был дан крупнейшим физиком XX века Альбертом Эйнштейном. Основываясь на работах Лобачевского и постулатах Римана, он создал теорию относительности, подтвердившую искривленность нашего пространства.

В соответствии с этой теорией любая материальная масса искривляет окружающее ее пространство. Теория Эйнштейна была многократно подтверждена астрономическими наблюдениями, в результате которых стало ясно, что геометрия Лобачевского является одним из фундаментальных представлений об окружающей нас Вселенной.

КИБЕРНЕТИКА

«Винер по праву назван отцом кибернетики, — пишет в своей „Кибернетической смеси“ В.Д. Пекелис. — Его книга „Кибернетика“ появилась в 1948 году и потрясла многих неожиданностью выводов, оказала ошеломляющее влияние на общественное мнение. Ее появление можно уподобить исподволь подготовленному взрыву.

В истории кибернетики, как и в любой другой науке, два периода: накопление материала и оформление его в новую науку… Здесь стоит упомянуть посвященные теории регулирования работы инженера А. Стодолы, опубликованные в конце прошлого века в одном из швейцарских журналов. В них рассматривался принцип управления с помощью обратной связи. Своеобразие истории вычислительной техники знаменательно тем, что первые счетные машины сразу же открыли перед человеком возможность механизации умственной работы. Здесь нельзя обойти вниманием „Математическое исследование логики“ Джорджа Буля. Оно положило начало разработке алгебры логики, которой широко пользуется теперь кибернетика.

Когда в теории вероятностей возник новый раздел — теория информации, универсальность новой теории, хоть и не сразу, стала ясна всем. Обнаружилось, например, соответствие между количеством информации и мерой перехода различных форм энергии в тепловую — энтропией. Впервые на это указал в 1929 году известный физик Л. Сциллард. Впоследствии теория информации стала одной из важных основ в кибернетике.

В XIX веке заметны достижения и в физиологии высшей нервной деятельности. Особенно в исследовании процессов обучения животных. В 30-х годах нашего столетия явлением стала теория физиологической активности Беркштейна, еще позже принцип функциональной системы Анохина».

Вместе с прогрессом происходит и сближение технических средств, используемых и в физиологии и в автоматике. Такое сближение сопровождается взаимным обменом принципами построения структурных схем, идеями моделирования, методами анализа и синтеза систем.

Подобную тенденцию одним из первых уловил русский философ Александр Александрович Богданов. «Мой исходный пункт, — писал ученый, — заключается в том, что структурные отношения могут быть обобщены до такой формальной чистоты схем, как в математике и отношениях величин, и на такой основе организационные задачи могут решаться способами, аналогичными математическим».

Таким образом, Богданов предвосхитил появление общей теории систем — одной из ключевых концепций кибернетики. Русский ученый сумел обосновать и принцип обратной связи, назвав его «механизмом двойного взаимного регулирования».

Позднее, в 1936 году английский математик А. Тьюринг опубликовал работу, описывающую абстрактную вычислительную машину. Некоторые положения его труда во многом предвосхитили различные проблемы кибернетики.

Однако решающее слово в рождении новой науки сказал крупный американский математик Винер.

Норберт Винер (1894–1964) родился в городе Колумбия штата Миссури. Читать он научился с четырех лет, а в шесть уже читал Дарвина и Данте. В девять лет он поступил в среднюю школу, в которой начинали учиться дети с 15–16 лет, закончив предварительно восьмилетку. Среднюю школу он окончил, когда ему исполнилось одиннадцать. Сразу же мальчик поступил в высшее учебное заведение, Тафте-колледж. После окончания его, в возрасте 14 лет, получил степень бакалавра искусств. Затем учился в Гарвардском и Корнельском университетах, в 17 лет в Гарварде стал магистром искусств, в 18 — доктором философии по специальности «математическая логика».

Гарвардский университет выделил Винеру стипендию для учебы в Кембриджском (Англия) и Геттингенском (Германия) университетах. Перед Первой мировой войной, весной 1914 года Винер переехал в Геттинген, где в университете учился у Э.Ландау и великого Д.Гильберта.

В начале войны Винер вернулся в США, год провел в Кембридже, но в сложившихся условиях научных результатов добиться не мог. В Колумбийском университете он стал заниматься топологией, но начатое до конца не довел. В 1915–1916 учебном году Винер в должности ассистента преподавал математику в Гарвардском университете.

Следующий учебный год Винер работал по найму в университете штата Мэн. После вступления США в войну он работал на заводе «Дженерал электрик», откуда перешел в редакцию Американской энциклопедии в Олбани. Затем Норберт какое-то время участвовал в составлении таблиц артиллерийских стрельб на полигоне, где его даже зачислили в армию, но вскоре из-за близорукости уволили. Потом он перебивался статьями в газеты, написал две работы по алгебре, вслед за опубликованием которых получил рекомендацию профессора математики В.Ф. Осгуда и в 1919 году поступил на должность ассистента кафедры математики Массачусетсского технологического института (МТИ). Так началась его служба в этом институте, продолжавшаяся всю жизнь.

Здесь Винер ознакомился с содержанием статистической механики У. Гиббса. Ему удалось связать основные положения ее с лебеговским интегрированием при изучении броуновского движения и написать несколько статей. Такой же подход оказался возможным в установлении сущности дробового эффекта в связи с прохождением электрического тока по проводам или через электронные лампы.

Возвратившись в США, Винер усиленно занимается наукой. В 1920–1925 годах он решает физические и технические задачи с помощью абстрактной математики и находит новые закономерности в теории броуновского движения, теории потенциала, гармоническом анализе.

В 1922, 1924— и 1925 годах Винер побывал в Европе у знакомых и родственников семьи. В 1925 году он выступил в Геттингене с сообщением о своих работах по обобщенному гармоническому анализу, заинтересовавшим Гильберта, Куранта и Борна. Впоследствии Винер понял, что его результаты в некоторой степени связаны с развивавшейся в то время квантовой теорией.

1 ... 64 65 66 67 68 69 70 71 72 ... 129
Перейти на страницу:
На этой странице вы можете бесплатно скачать 100 великих научных открытий - Д Самин торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉