Среднего более не дано. Как выйти из эпохи великой стагнации - Тайлер Коуэн
Шрифт:
Интервал:
Закладка:
Неразрешимые задачи
Существует еще одна причина того, почему многие из областей науки станут еще более сложными для понимания.
Лет тридцать-сорок назад было логичным предполагать, что для таких сложных областей науки, как космология, фундаментальная физика, генетика и даже макроэкономика будут найдены достаточно простые, легко объяснимые, вполне наглядные подходы. Например, общая теория относительности Эйнштейна, кажущаяся на первый взгляд нелогичной, отличается достаточно простой структурой. Как только вы разобрались в ней, вы начинаете ее понимать и в состоянии мыслить соответствующим образом. Вы оказываетесь в состоянии рассуждать о парадоксах путешествия во времени, понимать некоторые трюки из научно-фантастических фильмов и даже определять, когда эти трюки плохо соотносятся с научными принципами. А некоторые из нас способны даже вывести это в виде формул.
Уже в наше время надежды на относительно простые с точки зрения понимания научные прорывы во многих областях науки разбиваются о скалы разочарования. Несмотря на многочисленные достижения науки, объяснение мира, с концептуальной точки зрения, выглядит еще более запутанным, чем раньше. Объяснения человеческого поведения на основе генетических особенностей множатся, а связь между генами и внешностью и физическими данными становится все менее внятной и все более запутанной. Даже рост человека — без сомнения, наследственная характеристика — зависит от десятков различных генов, и по мере продолжения исследований их число постоянно увеличивается. Нам не найти «ген гомосексуальности» или «ген аутизма», даже несмотря на то что и в гомосексуальности и в аутизме гены играют первостепенную роль.
Или взять, к примеру, недавнее обнаружение бозона Хиггса. С одной стороны, его обнаружение обещает доработку предыдущих теорий элементарных частиц и эмпирическую проверку ждущих подтверждения предположений. С другой стороны, исследователи уже ломают головы над более глубокими принципами «Теории великого объединения», которые мы пока не понимаем. Предполагаемые решения не отличаются ни простотой, ни логичностью, и нет никакой уверенности в том, что со временем они поддадутся всеобщему пониманию.
Возможно, в ряде ключевых областей науки мы просто достигли таких высот, где объяснения неподвластны человеческому уму. Даже уму нобелевских лауреатов. Вполне возможно, что ведущие ученые превратятся в конце концов не столько в специалистов, которые «знают», сколько в тех, кто владеет общими туманными представлениями об изучаемом вопросе. Вопросы, постановка которых происходит сегодня на передовом крае космологии, эпигенетики или макроэкономики, отличаются большей глубиной и сложностью, чем вопросы, которые стояли перед этими областями сорок и даже двадцать лет назад. Нет никаких гарантий того, что будущие достижения науки вернут нам более простые концепции мироустройства. Наоборот, все позволяет говорить как раз о противоположном. Однако, принимая во внимание тот факт, что в обработке информации мы все более полагаемся на гениальные машины вместо построения собственной простой и внятной всеобъемлющей системы понимания мира, так уж ли это и плохо?
Вследствие тех высот, что достигла математика, мы уже разрабатываем теории, которые поддаются пониманию лишь небольшим числом людей, если их вообще кто-либо способен понять. Теория струн, ставшая известной широкой публике благодаря научно-популярной книге Брайана Грина «Элегантная Вселенная» (The Elegant Universe), далека от логического понимания. Вполне вероятно, никто толком и не знает, что именно означает наличие десяти или более гипотетических измерений. Мы в состоянии разобраться с этими измерениями с помощью высшей математики, однако это — один из примеров того, как научная теория может развиться до такой степени, что она не поддается пониманию. Попробуйте понять следующее описание с сайта интернет-энциклопедии Wikipedia, которая, естественно, старается подавать материал в как можно более доступной форме:
Согласно теории струн, электроны и кварки внутри атома представляют собой не безмерные объекты, а состоят из одномерных струн. Данные струны колеблются, придавая наблюдаемым частицам соответствующие форму, заряд, массу и вращение. Одно из проявлений колебания струн — гравитон, безмассовая частица с вращением типа 2. Существование данного состояния в виде гравитона и тот факт, что описывающие теорию струн формулы включают в себя формулы общей теории относительности Эйнштейна, говорят о том, что теория струн представляет собой квантовую теорию всемирного тяготения. Поскольку признается, что теория струн с математической точки зрения верна, многие надеются, что она полностью описывает нашу вселенную, что делает ее теорией, описывающей всё. Рядом вариантов теории струн описываются все наблюдаемые фундаментальные силы и материи, кроме тех, что характеризуются космологической константой, равной о, и наблюдаемых в ряде новых областей. Другие варианты используют отличные значения космологической константы, которая в данных вариантах отличается метастабильностью, но продолжительными периодами существования. Это дает многим основания предполагать существование по крайней мере одного решения метастабильности, количественно совпадающего со стандартной моделью и характеризующегося наличием малой космологической константы, темной материи и внятного механизма расширения космоса. Пока неизвестно, содержит ли теория струн такое решение и какая свобода в выборе составляющих ею допускается.
Это было самое простое. Читаем дальше:
Кроме собственно струн, теории струн предполагают наличие других объектов, известных как браны. Термином «брана», производным от слова «мембрана», обозначается целый ряд взаимозависимых объектов, таких как D-браны, черные p-браны и 5-браны Неве-Шварца. Браны представляют собой обладающие зарядом протяженные объекты, позволяющие разрабатывать различные концептуальные обобщения потенциально-векторных электромагнитных полей. Среди данных объектов выделяется целый ряд пар. Так, сообразные с черной дырой черные р-браны составляют пару с D-бранами, представляющими собой концы струн. Данная парность (дуальность) получила название «дуальность калибр—тяготение». Исследования данной эквивалентности привели к новому пониманию квантовой хромодинамики — фундаментальной теории, описывающей сильное взаимодействие элементарных частиц. Струнами формируются закрытые петли, за исключением случаев, когда им попадаются D-браны. В этом случае они преобразуются в однопространственные линии. Окончания струны не в состоянии оторваться от D-браны, но они способны огибать ее поверхность.