Математика. Поиск истины. - Клайн Морис
Шрифт:
Интервал:
Закладка:
Использование вероятности может показаться отчаянной попыткой спасти положение, но статистическая механика убедительно доказала ценность вероятностного подхода. Любой газ представляет собой совокупность множества хаотически движущихся молекул, однако давление газа и другие его свойства удается вычислять на основе наиболее вероятных значений, и эти параметры имеют физический смысл.
Эйнштейн, Планк и Шрёдингер выступали против вероятностной интерпретации квантовой механики. Свои возражения Эйнштейн, в частности, изложил в 1955 г., аргументируя их ссылкой на приближенный характер и неполноту квантовой теории:
Я отвергаю основную идею современной статистической квантовой теории… Я не верю, что такая фундаментальная концепция может стать надлежащей основой для всей физики в целом… Я твердо убежден, что существенно статистический характер современной квантовой теории следует приписать исключительно тому, что эта теория оперирует с неполным описанием физических систем.
([7], т. 4, с. 295.)Хотя вероятностная интерпретация квантовой теории получила широкое признание, в душе некоторых физиков робко теплилась надежда на то, что будущие исследования все же откроют возможность точного и достоверного определения положения электрона в пространстве. Но одна из принципиально новых особенностей квантовой теории как раз и состоит в неизбежности некоторого индетерминизма. Мы имеем в виду принцип неопределенности, открытый в 1927 г. Вернером Гейзенбергом (1901-1976). Грубо говоря, принцип неопределенности утверждает, что невозможно получить одновременно точную информацию и о положении, и о скорости (или импульсе) частицы. Точнее Гейзенберг показал, что произведение неопределенностей в оценке положения и импульса должно быть не менее ħ/2π (∆x∙∆p ≥ ħ = ħ/2π).Гейзенберг был убежден в правильности сформулированного им принципа и объяснял его тем, что частицы обладают и волновыми, и корпускулярными свойствами. И положение, и импульс частицы можно измерить сколь угодно точно, но только не одновременно, а порознь — либо координату, либо импульс. Тогда же Гейзенберг высказал предположение, что при столь тонких измерениях, как квантовомеханические, становится существенным сам объект, посредством которого производится измерение, — пробная частица.
Этот источник неопределенности начинает играть важную роль потому, что при измерении положения или импульса, например, электрона в качестве пробной частицы можно использовать только либо другие электроны, либо фотоны, но и те и другие оказывают сильное воздействие на исследуемую частицу. Следовательно, в мире атома мы не можем наблюдать явления, не создавая при этом возмущения. Так как положение и скорость микрочастиц невозможно измерить одновременно сколь угодно точно, мы лишены возможности точно предсказывать их поведение. И нам не остается ничего другого, как довольствоваться вероятностными предсказаниями. Наблюдения и эксперименты классической физики здесь ничем не помогут.
Если бы постоянная Планка была достаточно велика, то квантовая неопределенность распространялась бы и на макроскопические явления. Например, мы не могли бы с уверенностью сказать, попадет ли снайпер в мишень, даже тщательно прицелившись. Но вследствие крайне малой величины постоянной Планка между квантовомеханическим миром и нашей макроскопической реальностью нет прямого соответствия. Неопределенность внутренне присуща волновой механике. Что же касается наблюдаемых макроскопических объектов, то неопределенность в определении их положения и импульса очень мала и потому практически неощутима.
Квантовомеханический принцип неопределенности подрывает классическую концепцию объективности, т.е. идею о том, что мир находится во вполне определенном состоянии независимо от наблюдения его. Квантовомеханический подход противоречит нашему повседневному опыту, свидетельствующему в пользу классической концепции объективности, согласно которой мир продолжает существовать своим путем, даже если мы не воспринимаем его. Просыпаясь утром, мы застаем мир примерно таким, каким оставили его накануне вечером. Что же касается квантовомеханической интерпретации принципа неопределенности, то она приводит к иному выводу: стоит вглядеться в мир пристальнее (на атомном уровне), как окажется, что его состояние зависит и от того, каким именно образом мы его наблюдаем и что выбираем за объект наблюдения. Классический идеал объективной реальности нуждается в пересмотре с учетом реальности, создаваемой наблюдателем.
В дальнейшем усилия ученых, занимающихся исследованием структуры атома, сосредоточились в основном на атомном ядре. Явление радиоактивности давало основания считать, что ядро атома отнюдь не является неделимой частицей. Радиоактивные атомы испускают альфа-, бета- и гамма-излучение. Альфа-излучение представляет собой поток альфа-частиц, имеющих положительный электрический заряд, по абсолютной величине вдвое больший заряда электрона, и массу, в четыре раза превосходящую массу атома водорода. Бета-излучение — это поток бета-частиц, т.е. электронов. Наконец, гамма-излучение есть не что иное, как «жесткое» электромагнитное излучение, т.е. характеризующееся самыми высокими из известных частот. Все три вида излучения испускают ядра тяжелых атомов.
Последующие экспериментальные исследования структуры атомного ядра, производимые главным образом на ускорителях — своего рода «молотах», способных расколоть атомное ядро, — показали, что ядро действительно не является цельным, неделимым образованием, а состоит из множества различных частиц: протонов, нейтронов, пионов, состоящих в свою очередь из кварков. Сообщения об открытии новых частиц продолжают поступать и поныне: анализируя результаты экспериментов, физики приходят к выводу о существовании той или иной частицы. Многие частицы, входящие в состав атомного ядра, определенным образом связаны между собой, но для наших целей вполне достаточно того, что они существуют.
Хотя атомное ядро образуют самые различные частицы, основными «строительными блоками» всякого вещества остаются протоны и нейтроны. Из них на 99,99 % состоят наши тела. Ядра всех элементов, которые тяжелее водорода, помимо протонов содержат нейтроны.
Некоторые структурные единицы атомных ядер, как и электроны, обладают волновыми свойствами. В частности, это относится к ядрам атомов водорода и гелия. Вместе с тем при столкновениях ядра ведут себя как частицы.
Множество частиц, как входящих в состав атомного ядра, так и существующих самостоятельно, обладают еще одним удивительным свойством: они способны претерпевать превращения. Например, протон может превращаться в нейтрон с испусканием нейтрино и позитрона, обладающего такой же массой, как электрон, но имеющего положительный заряд, равный по абсолютной величине заряду электрона. (Существование позитрона предсказал в 1932 г. Поль А.М. Дирак (1902-1984), руководствуясь чисто теоретическими соображениями.) Возможно и обратное превращение: нейтрон, испуская электрон и нейтрино, переходит в протон.
Квант электромагнитного поля, или фотон, — если он обладает достаточной энергией — может, взаимодействуя с электрическим полем атомного ядра, породить пару электрон — позитрон. Существует и обратный процесс, в котором электрон и позитрон при соударении исчезают (аннигилируют), образуя два фотона.
Таким образом, можно сказать, что способность претерпевать разнообразные превращения является основным свойством элементарных частиц, многие из которых нестабильны и получаются в лаборатории или образуются в космическом излучении. Протоны и электроны, насколько это известно в настоящее время, относятся к стабильным частицам, т.е. не распадаются на другие элементарные частицы. Правда, современные гипотетические модели так называемого Великого объединения предполагают, что протон претерпевает распад, но, видимо, не чаще, чем примерно раз за 10 30лет.
Картина микромира еще более усложняется существованием античастиц. Это группа элементарных частиц, массы и ряд других физических характеристик которых имеют ту же величину, что и у их «двойников», в то же время некоторые их характеристики (например, электрический заряд) противоположны по знаку. Как уже говорилось, при столкновении электрона и позитрона образуются два и более фотонов. Столкновение протона и антипротона приводит к возникновению мезонов. Подобно тому как из частиц строится вещество, из античастиц может быть построено антивещество.