Категории
Самые читаемые книги
ЧитаемОнлайн » Разная литература » Прочее » Верховный алгоритм - Педро Домингос

Верховный алгоритм - Педро Домингос

Читать онлайн Верховный алгоритм - Педро Домингос

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 57 58 59 60 61 62 63 64 65 ... 86
Перейти на страницу:

Метод образования фрагментов и обучение с подкреплением используются в бизнесе не так широко, как обучение с учителем, класте­ризация и понижение размерности, но есть и более простой тип обучения путем взаимодействия со средой: определение последствий (и действие в соответствии с полученной информацией). Если домашняя страница вашего интернет-магазина голубого цвета и вы задумываетесь, не сделать ли ее красной для повышения продаж, протестируйте новый вариант на 100 тысячах случайно отобранных клиентов и сравните результаты с теми, кто видел обычный сайт. Эту методику, называемую A/B-тестированием, поначалу применяли в основном при испытаниях лекарств, но с того времени она распространилась на многие области, где данные под рукой — от маркетинга до предоставления помощи иностранным государствам. Его можно обобщить для одновременной проверки многих сочетаний изменений, не запутываясь, какие изменения ведут к каким приобретениям (или потерям). Amazon, Google и другие компании верят этому тестированию безгранично. Вы, скорее всего, сами того не подозревая, участвовали в тысячах A/B-тестов. Этот метод показывает ошибочность расхожего мнения, что большие данные хороши для нахождения корреляций, но не причинно-следственных связей. Если оставить в стороне философские тонкости, определение причинности — нахождение последствий действий, и оно доступно каждому — от годовалого ребенка, который плещется в ванночке, и до президента, ведущего кампанию по переизбранию, — был бы поток данных, на который есть возможность влиять.

Как найти соотношения

Если мы одарим нашего Робби всеми способностями к обучению, которые до сих пор видели в этой книге, он будет достаточно умным, но немного аутич­ным. Мир для него окажется скоплением отдельных предметов: он начнет узнавать их, манипулировать ими и даже делать в их отношении прогнозы, но не будет понимать, что мир — это сеть взаимосвязей. Робби-врач станет ставить диагнозы человеку с гриппом на основе симптомов, но не заподозрит свиной грипп на том основании, что пациент контактировал с носителем вируса. До появления Google поисковые движки решали, соответствует ли веб-страница вашему запросу, заглядывая в ее содержимое, — что еще можно сделать? Идея Брина и Пейджа заключалась в том, что самый сильный признак, указывающий на то, что страница подходит, — это ссылки на нее с других подходящих страниц. Аналогично, если вы хотите предсказать, рискует ли подросток начать курить, — лучшее, что вы можете сделать, — проверить, курят ли его близкие друзья. Форма фермента неотделима от формы молекул, которые он переносит, как замок неотделим от ключа. Хищника и жертву объединяют сильно взаимосвязанные свойства, каждое из которых эволюционировало, чтобы победить соперника. Во всех этих случаях лучший способ понять сущность — будь то человек, животное, веб-страница или молекула, — понять, как она связана с другими сущностями. Для этого требуется новый род обучения, который относится к данным не как к случайной выборке не связанных друг с другом объектов, а как к возможности взглянуть на сложную сеть. Узлы в этой сети взаимодействуют: то, что вы делаете с одним, влияет на другие и возвращается, чтобы повлиять на вас. Реляционные обучающиеся алгоритмы, как они называются, могут не иметь социальных навыков, но близки к этому. В традиционном статистическом обучении каждый человек как остров, вещь в себе. В реля­ционном обучении люди — кусочки континента, часть главного. Они реляционные обучающиеся алгоритмы, связанные и подключенные друг к другу, и, если мы хотим, чтобы Робби вырос восприимчивым, социально адаптированным роботом, его тоже надо подключить.

Первая сложность, с которой мы сталкиваемся, заключается в следующем: если данные образуют одну большую сеть, вместо большого числа примеров для обучения у нас, видимо, будет всего один, а этого недостаточно. Наивный байесовский алгоритм узнает, что высокая температура — один из симпто­мов гриппа, путем подсчета больных гриппом пациентов с лихорадкой. На основе одного случая он либо сделает вывод, что грипп всегда вызывает высокую температуру, либо что он никогда ее не вызывает. И то и другое ложно. Мы хотели бы определить, что грипп — заразная болезнь, посмотрев на паттерны инфекции в социальной сети — группа зараженных людей тут, группа незараженных там, — но посмотреть мы можем только на один паттерн, даже если он представляет собой сеть из семи миллиардов людей, поэтому неясно, как тут делать обобщения. Ключ к решению — обратить внимание на то, что при погружении в большую сеть в нашем распоряжении оказывается много примеров пар. Если у пары знакомых выше вероятность заболеть гриппом, чем у пары людей, которые никогда не встречались, то знакомство с заболевшим делает и вас уязвимее для этой болезни. К сожалению, не получится просто посчитать в име­ющихся данных пары знакомых, где оба больны гриппом, и превратить результат в вероятность. Дело в том, что знакомых у людей много и все парные вероятности не сложатся в связную модель, которая позволит, например, вычислить риск гриппа, зная, какие знакомые больны. Когда примеры не были связаны между собой, этой проблемы не возникало: ее не будет, скажем, в обществе бездетных пар, каждая из которых живет на собственном необитаемом острове. Но такой мир нереален, и эпидемий в нем не появится в любом случае.

Решение заключается в том, чтобы получить набор свойств и узнать их вес, как в сетях Маркова. Для каждого человека X можно ввести свойство «X болен гриппом», для каждой пары знакомых X и Y — свойство «и X, и Y больны гриппом» и так далее. Как и в марковских сетях, максимально правдоподобный вес будет заставлять свойство встречаться с частотой, наблюдаемой в данных. Вес «X болен гриппом» будет высоким, если много людей больны гриппом. Вес «и X, и Y больны гриппом» окажется выше, если шанс заболеть гриппом у Y с больным знакомым X выше, чем у случайно выбранного члена сети. Если 40 процентов людей и 16 процентов всех пар знакомых больны гриппом, вес свойства «и X, и Y больны гриппом» будет нулевым, потому что для правильного воспроизведения статистики данных (0,4 × 0,4 = 0,16) это свойство не нужно. Однако если вес свойства положительный, грипп с большей вероятностью будет возникать в группах, а не произвольно инфицировать людей, и вероятность заболеть гриппом станет выше, если больны знакомые.

Обратите внимание, что сеть имеет отдельное свойство для каждой пары — «и у Элис, и у Боба грипп», «и у Элис, и у Криса грипп» и так далее. Но узнать вес для каждой пары не получится, потому что для пары есть только одна точка данных (инфицированы или нет) и нельзя сделать обобщение для членов сети, которым мы еще не поставили диагноз (есть ли грипп и у Иветт, и у Зака?). Вместо этого мы можем узнать единичный вес для всех свойств такой формы на основе всех частных случаев, которые наблюдали. В результате «и X, и Y больны гриппом» будет шаблоном свойств, который можно применить к каждой паре знакомых (Элис и Бобу, Элис и Крису и так далее). Веса для всех частных случаев шаблона связаны в том смысле, что у них всех будет одинаковое значение, и таким образом обобщение окажется возможным, несмотря на то что пример у нас всего один (сеть в целом). В нереляционном обучении параметры модели связаны только одним способом: по всем независимым примерам (например, все пациенты, которым мы поставили диагноз). В реляционном обучении каждый шаблон свойств, который мы создаем, связывает параметры всех его частных случаев.

Мы не ограничены парными или индивидуальными свойствами. Facebook хочет выявить ваших потенциальных друзей, чтобы порекомендовать их вам. Для этого используется правило «Друзья друзей, вероятно, тоже друзья», а каждый частный случай этого правила включает троих: если Элис и Боб — друзья, и Боб и Крис — друзья, то Элис и Крис — потенциальные друзья. В шутке Генри Менкена107 о том, что мужчина богат, когда он зарабатывает больше мужа сестры своей жены, присутствует упоминание о четырех людях. Каждое из этих правил можно превратить в шаблон свойств реляционной модели, а вес для них можно получить на основе того, как часто свойство встречается в данных. Как и в марковских сетях, сами свойства тоже можно вывести из данных.

Реляционные обучающиеся алгоритмы способны переносить обобщения из одной сети в другую (например, получить модель распространения гриппа в Атланте и применить ее в Бостоне) и учиться на нескольких сетях (например, для Атланты и Бостона при нереалистичном допущении, что в Атланте никто никогда не контактировал с бостонцами). В отличие от «традиционного» обучения, где все примеры должны иметь одинаковое количество атрибутов, в реляционном обучении размер сетей может быть разным: более крупная сеть просто будет содержать больше частных случаев тех же шаблонов, что и меньшая. Конечно, перенос обобщения из меньшей сети в большую может быть точным, а может и не быть, но смысл в том, что ничто не мешает это делать, а крупные сети локально часто ведут себя как небольшие.

1 ... 57 58 59 60 61 62 63 64 65 ... 86
Перейти на страницу:
На этой странице вы можете бесплатно скачать Верховный алгоритм - Педро Домингос торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉