Категории
Самые читаемые книги
ЧитаемОнлайн » Компьютеры и Интернет » Программирование » Разработка ядра Linux - Роберт Лав

Разработка ядра Linux - Роберт Лав

Читать онлайн Разработка ядра Linux - Роберт Лав

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 56 57 58 59 60 61 62 63 64 ... 132
Перейти на страницу:

Вооружённые арсеналом методов синхронизации из данной главы теперь вы сможете писать код ядра, который защищён от состояний конкуренции за ресурсы и позволяет обеспечить необходимую синжронизацию с помощью самого подходящего для этого инструментария.

Глава 10

Таймеры и управление временем

Отслеживание хода времени очень важно для ядра. Большое количество функций, которые выполняет ядро, управляются временем (time driven), в отличие от тех функций, которые выполняются по событиям[53] (event driven). Некоторые из этих функций выполняются периодически, как, например, балансировка очередей выполнения планировщика или обновление содержимого экрана. Такие функции вызываются в соответствии с постоянным планом, например 100 раз в секунду. Другие функции, такие как отложенные дисковые операции ввода-вывода, ядро планирует на выполнение в некоторый относительный момент времени в будущем. Например, ядро может запланировать работу на выполнение в момент времени, который наступит позже текущего на 500 миллисекунд. Наконец, ядро должно вычислять время работы системы (uptime), а также текущую дату и время.

Следует обратить внимание на разницу между относительным и абсолютным временем. Планирование выполнения некоторой работы через 5 секунд в будущем не требует учета абсолютного времени, а только относительного (например, через пять секунд от текущего момента времени). В рассмотренной ситуации расчет текущей даты и времени требует от ядра не только учета хода времени, но и абсолютного измерения времени. Обе концепции являются важными для управления временем.

Также следует обратить внимание на отличия между событиями, которые возникают периодически, и событиями, которые ядро планирует на выполнение в некоторый фиксированный момент времени в будущем. События, которые возникают периодически, скажем каждые 10 миллисекунд, управляются системным, таймером. Системный таймер — это программируемое аппаратное устройство, которое генерирует аппаратное прерывание с фиксированной частотой. Обработчик этого прерывания, который называется прерыванием таймера (timer interrupt), обновляет значение системного времени и выполняет периодические действия. Системный таймер и его прерывание являются важными для работы операционной системы Linux, и в текущей главе им уделяется главное внимание.

Кроме того, в этой главе будут рассмотрены динамические таймеры (dynamic timers) — средства, позволяющие планировать события, которые выполняются один раз, после того как истек некоторый интервал времени. Например, драйвер накопителя на гибких магнитных дисках использует таймер, чтобы остановить двигатель дисковода, если дисковод неактивен в течение некоторого периода времени. В ядре можно динамически создавать и ликвидировать таймеры. В данной главе рассказывается о реализации динамических таймеров, а также об интерфейсе, который доступен для использования в программном коде.

Информация о времени в ядре

Концепция времени для компьютера является несколько неопределенной. В действительности, для того чтобы получать информацию о времени и управлять системным временем, ядро должно взаимодействовать с системным аппаратным обеспечением. Аппаратное обеспечение предоставляет системный таймер, который используется ядром для измерения времени. Системный таймер работает от электронного эталона времени, такого как цифровые электронные часы или тактовый генератор процессора. Интервал времени системного таймера периодически истекает (еще говорят таймер срабатывает — hitting, popping) с определенной запрограммированной частотой. Эта частота называется частотой импульсов таймера, (tick rate). Когда срабатывает системный таймер, он генерирует прерывание, которое ядро обрабатывает с помощью специального обработчика прерывания.

Так как в ядре есть информация о запрограммированной частоте следования импульсов таймера, ядро может вычислить интервал времени между двумя успешными прерываниями таймера. Этот интервал называется временной отметкой или импульсом таймера (tick) и в секундах равен единице, деленной на частоту импульсов. Как будет показано дальше, именно таким способом ядро отслеживает абсолютное время (wall time) и время работы системы (uptime). Абсолютное время— это фактическое время дня, которое наиболее важно для пользовательских приложений. Ядро отслеживает это время просто потому, что оно контролирует прерывание таймера. В ядре есть семейство системных вызовов, которое позволяет пользовательским приложениям получать информацию о дате и времени дня. Это необходимо, так как многие программы должны иметь информацию о ходе времени. Разница между двумя значениями времени работы системы — "сейчас" и "позже" — это простой способ измерения относительности событий.

Прерывание таймера очень важно для управления работой всей операционной системы. Большое количество функций ядра действуют и завершаются в соответствии с ходом времени. Следующие действия периодически выполняются системным таймером.

• Обновление значения времени работы системы (uptime).

• Обновление значения абсолютного времени (time of day).

• Для SMP-систем выполняется проверка балансировки очередей выполнения планировщика, и если они не сбалансированы, то их необходимо сбалансировать (как было рассказано в главе 4, "Планирование выполнения процессов").

• Проверка, не израсходовал ли текущий процесс свой квант времени, и если израсходовал, то выполнятся планирование выполнения нового процесса (как это было рассказано в главе 4).

• Выполнение обработчиков всех динамических таймеров, для которых истек период времени.

• Обновление статистики по использованию процессорного времени и других ресурсов.

Некоторые из этих действий выполняются при каждом прерывании таймера, т.е. эта работа выполняется с частотой системного таймера. Другие действия также выполняются периодически, но только через каждые n прерываний системного таймера. Иными словами, эти функции выполняются с частотой, которая равна некоторой доле частоты системного таймера. В разделе "Обработчик прерываний таймера" будет рассмотрена сама функция обработки прерываний системного таймера.

Частота импульсов таймера: HZ

Частота системного таймера (частота импульсов, tick rate) программируется при загрузке системы на основании параметра ядра НZ, который определен с помощью директивы препроцессора. Значение параметра HZ отличается для различных поддерживаемых аппаратных платформ. На самом деле, для некоторых аппаратных платформ значение параметра HZ отличается даже для разных типов машин.

Данный параметр ядра определен в файле <asm/param.h>. Частота системного таймера равна значению параметра HZ, период таймера равен 1/HZ. Например, в файле include/asm-i386/param.h для аппаратной платформы i386 этот параметр определен следующим образом.

#define HZ 1000 /* internal kernel time frequency */

Поэтому для аппаратной платформы i386 прерывание таймера генерируется с частотой 1000 Гц, т.е. 1000 раз в секунду (каждую тысячную долю секунды или одну миллисекунду). Для большинства других аппаратных платформ значение частоты системного таймера равно 100 Гц. В табл. 10.1 приведен полный список всех поддерживаемых аппаратных платформ и определенных для них значений частоты системного таймера.

Таблица 10.1. Значение частоты системного таймера

Аппаратная платформа Частота (в герцах) alpha 1024 arm 100 cris 100 h8300 100 i386 1000 ia64 32 или 1024[54] m68k 100 m68knommu 50, 100 или 1000 mips 100 mips64 100 parisc 100 или 1000 ppc 100 ppc64 1000 s390 100 sh 100 spare 100 sparc64 100 um 100 v850 24, 100 или 122 x86-64 1000

При написании кода ядра нельзя считать, что параметр HZ имеет определенное заданное значение. В наши дни это уже не такая часто встречающаяся ошибка, так как поддерживается много различных аппаратных платформ с разными частотами системного таймера. Раньше аппаратная платформа Alpha была единственной, для которой частота системного таймера отличалась от 100 Гц, и часто можно было встретить код, в котором жестко было прописано значение 100 там, где нужно использовать параметр HZ. Примеры использования параметра HZ в коде ядра будут приведены ниже.

1 ... 56 57 58 59 60 61 62 63 64 ... 132
Перейти на страницу:
На этой странице вы можете бесплатно скачать Разработка ядра Linux - Роберт Лав торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...