Металл Века - Григорий Николаев
Шрифт:
Интервал:
Закладка:
Отрадный факт. Небольшие добавки титана в литую сталь повышают ее прочность, улучшают все механические свойства и упрощают ее термическую обработку. Нередко титан добавляют в сочетании с бором, что обеспечивает лучшую прокаливаемость стали и обработку на токарных станках.
Добавление титана в чугун улучшает его обрабатываемость. И не только обрабатываемость, но и стойкость против ржавления, высоких температур, повышает сопротивляемость разрушающим воздействиям трения. Когда титан вводят в расплавленный чугун, содержащий большое количество углерода, титан и углерод вступают в реакцию между собой и образуют мелкие кристаллы карбида. При затвердевании чугуна частицы карбида титана выступают в роли центров кристаллизации и благодаря этому чугун получается с мелкозернистой структурой.
Присутствие карбида титана в инструментальных сталях уменьшает их растрескивание при закалке в воде, а поглощение титаном избытка углерода предотвращает межкристаллитное разрушение нержавеющей стали.
Титан повышает также прочность и твердость нержавеющих, долговечность жаропрочных сталей, способствует улучшению их свариваемости. Карбид титана используется не только для улучшения свойств чугуна и стали, но и в качестве самостоятельного материала для так называемых твердых сплавов, абразивов, при производстве материалов для инструментов и других важных узлов и деталей.
Впервые карбид титана был получен в 1887 году при обработке титанистого чугуна соляной кислотой. Вещество оказалось очень твердым и хрупким, обладающим некоторыми металлическими свойствами — блеском, хорошей электропроводностью. По своей жаростойкости карбид титана превосходит все другие тугоплавкие карбиды: он плавится при температуре свыше 3000 °С. В наши дни карбид титана получают прокаливанием диоксида титана с сажей в специальных индукционных печах.
Карбид титана — одно из самых устойчивых веществ, выдерживающих резкие смены температур. Он широко применяется как основа для получения жаростойких сплавов, режущих инструментов для обработки вязких материалов, благодаря высокой твердости используется для шлифования.
Вместе с карбидом вольфрама и кобальтом он входит в состав так называемых метал л о керамических твердых сплавов. Режущие инструменты, изготовленные из таких материалов, позволяют во много раз повысить скорость обработки сталей. Твердосплавные инструменты значительно повышают производительность труда в металлообрабатывающей, горнорудной, угольной и других отраслях промышленности. Они позволяют также обрабатывать вязкие материалы, с которыми не в состоянии справиться обычные резцы.
Благодаря высокой твердости, жаростойкости и жаропрочности карбид титана используется для получения материала, из которого делают лопатки турбин реактивных авиационных двигателей, защитные покрытия для сопел и головных частей ракет. Эти же свойства карбида титана, а также достаточная электропроводность и низкая скорость испарения позволяют использовать его в электродах для подводной электрокислородной резки стали и в электродах термопар, предназначенных для замера температур до 200 °С.
Из сплава карбида титана с вольфрамом делают детали насосов для перекачки расплавленного натрия, стойкие при температурах более 1000 С и давлениях, превышающих 8 атмосфер.
Соединений титана — многие сотни, но практическое применение нашли далеко не все из них. В технике используется еще соединение титана с бором — борид титана. Как и карбид, он обладает очень высокой твердостью и тоже пригоден для обработки материалов. Некоторые соединения титана применяются для проведения лабораторных анализов.
Глава 3. ОСВОБОЖДЕНИЕ ИСПОЛИНА
ИОДИДНЫЙ ТИТАН
Титан, полученный из тетрахлорида с помощью натрия, по мнению голландских исследователей ван Аркеля и де Бура, непременно должен содержать много оксидов и нитридов, загрязняющих материал и тем самым изменяющих его свойства. Эти ученые пришли к выводу, что самый чистый металлический титан может быть выделен не из четыреххлористого, а из четырехиодистого титана. В 1925 году ван Аркель и де Бур разработали метод повышения чистоты металлического титана, сущность которого состоит в следующем.
Черновой металл (титан, который предстоит очистить) при температурах 150—400 °С взаимодействует с иодом. Образуется четырехиодистый титан. При обычной температуре это кристаллическое вещество, цвет у него красно-бурый, оно интенсивно поглощает влагу. При высоких же температурах это соединение переходит в пар. Пары четырехиодистого титана при температуре около 1400 °С разлагаются. Молекула четырехиодистого титана распадается на составные части: на атомы титана и иода. Атомы титана осаждаются на какой-либо раскаленной поверхности, а освобожденный иод тут же соединяется с остающимся черновым металлом и снова участвует в процессе, перенося новую порцию титана на раскаленный предмет. Реакция протекает до тех пор, пока весь черновой металл, очищенный и облагороженный, не перекочует на раскаленную поверхность.
В установке, предложенной голландскими исследователями, титан осаждался на раскаленной вольфрамовой нити, медленно 26 и неуклонно обволакивая ее. Этот процесс осуществляли в стеклянной камере, из которой предварительно выкачивали воздух. Впоследствии метод ван Аркеля и де Бура усовершенствовали другие исследователи. В частности, вольфрамовую нить заменили титановой (чтобы не нарушать однородности получаемого металла), определили наиболее подходящие температурные режимы, улучшили аппаратурное оформление процесса. Но сущность способа осталась прежней.
Очистка чернового титана иодидным методом основана на том, что не все примеси, находящиеся в обычном металле, взаимодействуют с иодом и, следовательно, не все попадают на раскаленную нить. Элементы, которые вступают с иодом в реакцию, образуют неустойчивые соединения, не выдерживающие высоких температур, и тоже почти не попадают в иодидный титан. Полученный таким образом металл считается чистейшим.
Иодидный метод применяется и для очистки циркония, хрома, ниобия, тантала, ванадия, некоторых других элементов. Недостаток способа — малая производительность и высокая стоимость очищенного металла. Да, иодидный титан дороже обычного технического титана почти в двадцать раз! И все же наряду с существующими способами промышленного получения титана используется и иодидный метод.
Этим методом получают сверхчистый титан для нужд электротехники, вакуумной техники и для специальных областей применения. Яркие, внешне похожие на никель кристаллы иодидного титана используют для лабораторных исследований. Именно таким — серебристыми, сверкающими на свету кристаллами — и предстает перед человеком химический элемент титан.
ТИТАН В РЯДУ ЭЛЕМЕНТОВ
серебристо-серого цвета металлы, имеющие одинаковую шестигранную кристаллическую решетку и обладающие очень похожими свойствами.
Цирконий был открыт двумя годами раньше титана тем же Клапротом, а гафний — один из самь*х молодых элементов. Его существование впервые обнаружили в 1923 году.
Название новому элементу было дано от латинского корня старинного названия столицы Скандинавии — Гафн (havn) — теперешнего города Копенгагена.
Цирконий вдвое тяжелее титана, а гафний — почти втрое. Плавятся "родственники” титана при более высокой температуре, чем глава под- группы. Все три металла, поглощая кислород, становятся хрупкими, с азотом они образуют очень тугоплавкие соединения. Титан, цирконий, гафний охотно реагируют с углеродом, серой, галогенами.
Атом титана состоит из положительно заряженного ядра, вокруг которого вращаются 22 электрона, образуя четырехслойную оболочку. Величина заряда ядра соответственно составляет 22 элементарные единицы положительного электричества, то есть 22 протона, а количество нейтронов в ядре атома колеблется от 20 до 32.
Атомную массу титана пытались определить начиная с 1813 года. Первым предпринял такие попытки шведский ученый Берцелиус. Он получил результат, очень далекий от правильной цифры, но уже через десять лет различные исследователи в своих определениях были близки к истине. В конце XIX века для атомной массы титана было официально определено значение 48,1. В 1924 году установили, что атомная масса элемента № 22 — 47,90. Именно эту цифру вы и обнаружите, взглянув на периодическую таблицу элементов, в клетке, отведенной титану. Химический символ титана — Ti
Титан, как уже говорилось, находится в четвертой группе периодической системы. А это значит, что во всех своих важнейших и наиболее распространенных соединениях он четырехвалентен, то есть каждый атом титана, вступая в химическую связь, отдает четыре своих электрона. Однако титан довольно легко образует и такие соединения, в которых он трехвалентен. Встречается и двухвалентный титан, но таких соединений немного и они в своем большинстве неустойчивы.