Аппаратные интерфейсы ПК. Энциклопедия - Михаил Гук
Шрифт:
Интервал:
Закладка:
Что касается чтения из устройства PCI, то здесь пакетный режим организовать сложнее. Буферизации чтения у процессора, естественно, нет (операцию чтения можно считать выполненной лишь по получению реальных данных), и даже строковые инструкции будут порождать одиночные циклы. Однако у современных процессоров имеются возможности генерации запросов чтения более 4 байт. Для этого можно использовать инструкции загрузки данных в регистры MMX (8 байт) или XMM (16 байт), а из них уже выгружать данные в ОЗУ (которое работает много быстрее устройств PCI).
Строковые инструкции ввода-вывода (INSW, OUTSW с префиксом повторения REP), используемые для программированного ввода-вывода блоков данных (PIO), порождают серии одиночных транзакций, поскольку все данные блока относятся к одному адресу PCI.
Посмотреть, каким образом происходит обращение к устройству, несложно при наличии осциллографа: в одиночных транзакциях сигнал FRAME# активен всего 1 такт, в пакетных он длиннее. Число фаз данных в пакете соответствует числу тактов, во время которых активны оба сигнала IRDY# и TRDY#.
Стремиться к пакетизации транзакций записи стоит только в том случае, если устройство PCI поддерживает пакетные передачи в ведомом (target) режиме. Если это не так, то попытка пакетизации приведет даже к небольшой потере производительности, поскольку транзакция будет завершаться по инициативе ведомого устройства (сигналом STOP#), а не инициатора обмена, на чем теряется один такт шины. Так, к примеру, можно наблюдать, как при записи массива в память PCI, выполняемой директивой языка высокого уровня, устройство среднего быстродействия (вводящее лишь 3 такта ожидания готовности) принимает данные каждые 7 тактов, что при частоте 33 МГц и разрядности 32 бита дает скорость 33×4/7=18,8 Мбайт/с. Здесь 4 такта занимает активная часть транзакции (от сигнала FRAME# до снятия сигнала IRDY#) и 3 такта паузы. То же устройство по инструкции MOVSD принимает данные каждые 8 тактов шины (33×4/8=16,5 Мбайт/с). Эти данные — результат наблюдения работы PCI-ядра, выполненного на основе микросхемы FPGA фирмы Altera, не поддерживающего пакетные транзакции в ведомом режиме. То же самое устройство при чтении памяти PCI работает существенно медленнее — инструкцией REP MOVSW с него удалось получать данные каждые 19–21 тактов шины (скорость 33×4/20=6,6 Мбайт/с). Здесь сказывается и большая задержка устройства (оно выдает данные лишь в 8 такте после появления сигнала FRAME#), и то, что процессор начинает следующую пересылку лишь дождавшись данных от предыдущей. Трюк с использованием регистра XMM здесь дает положительный эффект, несмотря на потерю такта (на прекращение транзакции непакетным устройством), поскольку каждый 64-битный запрос процессора выполняется парой смежных транзакций PCI, между которыми пауза всего в пару тактов.
Для определения теоретического предела пропускной способности вернемся к рис. 6.7, чтобы определить минимальное время (число тактов) транзакций чтения и записи. В транзакции чтения после подачи команды и адреса инициатором (такт 1) меняется текущий «владелец» шины AD. На этот «разворот», или «пируэт» (turnaround), уходит такт 2, что обусловливается задержкой сигнала TRDY# целевым устройством. Далее может следовать фаза данных (такт 3), если целевое устройство достаточно расторопно. После последней фазы данных требуется еще 1 такт на обратный «пируэт» шины AD (в нашем случае это такт 4). Таким образом, чтение одного слова (4 байта) занимает минимум 4 такта по 30 не (33 МГц). Если эти транзакции следуют непосредственно друг за другом (если на такое способен инициатор и у него не отбирают право на управление шиной), то можно говорить о максимальной скорости чтения в 33 Мбайт/с при одиночных транзакциях. В транзакциях записи шиной AD все время управляет инициатор, так что здесь нет потери тактов на «пируэт». При расторопном целевом устройстве, не вносящем дополнительных тактов ожидания, скорость записи может достигать 66 Мбайт/с.
Скорость, соизмеримую с максимальной пиковой, можно получить только при пакетных передачах, когда имеют место дополнительные 3 такта при чтении и 1 при записи. Так, для чтения пакета с числом фаз данных 4 требуется 7 тактов (V= 16/(7×30) байт/нс = 76 Мбайт/с), а для записи — 5 (V= 16/(5×30) байт/нс = 106,6 Мбайт/с). При числе фаз данных в 16 скорость чтения может достигать 112 Мбайт/с, а записи — 125 Мбайт/с.
В этих выкладках не учитывались потери времени, связанны со сменой инициатора. Инициатор может начинать транзакцию по получении сигнала GNT#, только убедившись в том, что шина находится в покое (сигналы FRAME# и IRDY# пассивны); на фиксацию покоя уходит один такт. Как видно, захватывать для одного инициатора большую часть пропускной способности шины можно, увеличивая длину пакета. Однако при этом возрастет задержка получения управления шиной для других устройств, что не всегда допустимо. Отметим также, что далеко не все устройства способны отвечать на транзакции без тактов ожидания, так что реальные цифры будут скромнее.
Итак, для выхода на максимальную производительность обмена устройства PCI сами должны быть ведущими устройствами шины, причем способными генерировать пакетные циклы. Поддержку пакетного режима имеют далеко не все устройства PCI, а у имеющих, как правило, есть существенные ограничения на максимальную длину пакета. Радикально повысить пропускную способность позволяет переход на частоту 66 МГц и разрядность 64 бита, что обходится недешево. Для того, чтобы на шине могли нормально работать устройства, критичные к времени доставки данных (сетевые адаптеры, устройства, участвующие в записи и воспроизведении аудио-видеоданных и др.), не следует пытаться выжать из шины ее декларированную полосу пропускания полностью. Перегрузка шины может привести, например, к потере пакетов из-за несвоевременности доставки данных. Заметим, что адаптер Fast Ethernet (100 Мбит/с) в полудуплексном режиме занимает полосу около 13 Мбайт/с (10 % декларируемой полосы обычной шины), а в полнодуплексном — уже 26 Мбайт/с. Адаптер Gigabit Ethernet даже в полудуплексном режиме вписывается в полосу шины уже с натяжкой (он «выживает» лишь за счет больших внутренних буферов), для него больше подходит 64 бит/66 МГц.
6.2.6. Прерывания
В PC-совместимых компьютерах прерывания от устройств PCI обслуживаются с помощью традиционной связки пары контроллеров 8259А, расположенных на системной плате (см. п. 12.4), к которым обращается команда «подтверждение прерывания». Прерывания на шине PCI свободны от одной из нелепостей системы прерываний ISA. Устройство PCI вводит сигнал прерывания низким уровнем (выходом с открытым коллектором или стоком) на выбранную линию INTA#, INTB#, INTC# или INTD#. Этот сигнал должен удерживаться до тех пор, пока программный драйвер, вызванный по прерыванию, не сбросит запрос прерывания, обратившись по шине к данному устройству. Если после этого контроллер прерываний снова обнаруживает низкий уровень на линии запроса, это означает, что запрос на ту же линию ввело другое устройство, разделяющее данную линию с первым, и оно тоже требует обслуживания. Линии запросов от слотов PCI и PCI-устройств системной платы коммутируются на входы контроллеров прерываний относительно произвольно. Конфигурационное ПО может определить и указать занятые линии запросов и номер входа контроллера прерываний обращением к конфигурационному пространству устройства (см. п. 6.2.12). Программный драйвер, прочитав конфигурационные регистры, тоже может определить эти параметры для того, чтобы установить обработчик прерываний на нужный вектор и при обслуживании сбрасывать запрос с требуемой линии. К сожалению, в конфигурационных регистрах не нашлось стандартного места для бита, индицирующего введение запроса прерывания данным устройством, — тогда бы в прерываниях для PCI не было бы проблем с унификацией поддержки разделяемых прерываний.
Каждая функция устройства PCI может задействовать свою линию запроса прерывания, но должно быть готовым к ее разделению (совместному использованию) с другими устройствами. Если устройству требуется только одна линия запроса, то оно должно занимать линию INTA#, если две — INTA# и INTB#, и так далее. С учетом циклического сдвига линий запроса это правило позволяет установить в 4 соседних слота 4 простых устройства, и каждое из них будет занимать отдельную линию запроса прерывания. Если какой-то карте требуется две линии, то для монопольного использования прерываний нужно оставить соседний слот свободным. PCI-устройства системной платы тоже задействуют прерывания с той же закономерностью (кроме контроллера IDE, который, к счастью, держится особняком).
Назначение прерываний устройствам (функциям) выполняет процедура POST, и этот процесс управляем лишь частично. Параметрами CMOS Setup (PCI/PNP Configuration) пользователь определяет номера запросов прерываний, доступных шине PCI. В зависимости от версии BIOS это может выглядеть по- разному; либо каждой линии INTA#…INTD# явно назначается свой номер, либо ряд номеров отдается «на откуп» устройствам PCI вместе с устройствами ISA PnP (в противоположность устройствам «Legacy ISA»). В итоге POST определяет соответствие линий INTA#…INTD# номерам запросов контроллера и соответствующим образом программирует коммутатор запросов. По воле пользователя может оказаться так, что не каждой линии запроса шины PCI достается отдельный вход контроллера прерываний. Тогда коммутатор организует объединение нескольких линий запросов PCI на один вход контроллера, то есть разделяемые прерывания. В самом худшем случае устройствам PCI не достанется ни одного входа контроллера прерываний. Заметим, что BIOS вряд ли отдаст шине PCI прерывания 14 и 15 (их забирает контроллер IDE, если он не отключен), а также 3 и 4 (СОМ-порты).