Категории
Самые читаемые книги
ЧитаемОнлайн » Документальные книги » Биографии и Мемуары » Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла - Александр Шаров

Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла - Александр Шаров

Читать онлайн Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла - Александр Шаров

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 54 55 56 57 58 59 60 61 62 ... 66
Перейти на страницу:

С другой стороны, если бы кинетическая энергия в начале была заметно больше, то галактики сегодня разлетались бы по инерции совсем не тормозясь тяготением. То значение плотности вещества, при котором обе энергии уравновешиваются, называется критическим. Наблюдения показывают, что в первые мгновения расширения плотность была чрезвычайно близка к критическому значению. Рассмотрим для примера момент времени в прошлом, очень близкий к началу расширения, когда, согласно современной теории единое физическое взаимодействие, определяющее все процессы в веществе, распалось и сильное ядерное взаимодействие стало играть самостоятельную роль. Этот момент называют эпохой «Великого объединения», он отстоит от начала расширения всего на 10-33 с. Согласно данным наблюдений о скорости расширения и средней плотности вещества сегодня, и по расчетам по модели Фридмана, в эпоху «Великого объединения» отличие плотности от критической составляло менее 10-50 доли от значения самой плотности!

Таким образом, в самом начале расширения плотность вещества во Вселенной была удивительно близка к критической. Но почему? Почему силу взрыва, которая определила скорость расширения, природа подобрала такой, что критическая плотность с величайшей точностью совпала с реальной плотностью вещества?

Это и составляет вторую загадку Вселенной, называемую иногда «проблемой критической плотности».

Следующая проблема: почему, несмотря на удивительную однородность Вселенной в очень больших масштабах, в меньших масштабах все же были отклонения от однородности — небольшие первичные флуктуации? Именно эти небольшие сгущения потом под действием сил тяготения уплотнялись и образовали, уже в эпоху, близкую к нашей, галактики и их скопления.

Наконец, существует еще одна проблема. Она связана с предсказываемыми современной теорией особыми частицами, такими, например, как магнитные монополи. Эти своеобразные частицы возникли во Вселенной в эпоху «Великого объединения». Их должно было возникнуть тогда необычайно много. Правда, в ходе последующей эволюции часть монополей и их античастиц — антимонополей проаннигилируют друг с другом. Но, как показали расчеты Я.Б. Зельдовича и М.К. Хлопова, в сегодняшней Вселенной монополей должно остаться очень много — примерно столько же, сколько обычных частиц — протонов. Но ведь монополи в 1016 раз массивнее протонов. Это значит, что плотность вещества в виде монополей в сегодняшней Вселенной была бы в 1016 (!) раз больше, чем плотность обычного видимого вещества. Такого, конечно, не может быть. Следовательно, в сегодняшней Вселенной монополей практически нет. Куда же они делись?

Эта загадка получила название «проблемы монополей».

Перечисленные загадки связаны с теми процессами, которые происходили в самом начале расширения Вселенной, т. е. в них в зашифрованном виде хранится тайна начала. Оставалось подобрать ключ к шифру.

Мы изложим гипотезы, которые по современным представлениям описывают начало Большого взрыва. Ключ к пониманию «первотолчка» лежит в возникновении особого, так называемого вакуумноподобного состояния вещества, которое может возникать при очень большой плотности. В современной физике под большой плотностью понимается плотность, близкая к величине, определяемой тремя фундаментальными постоянными: G — постоянной тяготения, h — постоянной Планка и c — скоростью света:

Огромность этой величины трудно вообразить. Плотность получила название планковской. Согласно теории, при плотностях близких к планковской, в веществе могут возникать особые состояния, характеризуемые сильнейшими натяжениями, или, что то же самое, отрицательными давлениями. Соотношение между плотностью ρ* и давлением Р* такого состояния имеет вид: Р* = —ρ*с2. Именно такие состояния получили название вакуумноподобных.

Происхождение названия связано со следующим. Если в сегодняшней Вселенной из какой-то области пространства удалить все реальные частицы и поля, то эта область все же не может считаться «абсолютной пустотой (вакуумом)». Дело в том, что в пустоте все время происходит рождение и уничтожение так называемых виртуальных пар — частиц и античастиц, происходят своеобразные «квантовые флуктуации вакуума»: Следствия этих процессов измеряются в тонких экспериментах.

Квантовые флуктуации вакуума не могут быть устранены. Возможным следствием этих процессов является наличие очень небольшой плотности вакуума ρв и отрицательного давления (физически это означает натяжение) Pв. При этом должно выполняться соотношение pв = —ρв∙с2. Любое состояние вещества, в котором давление и плотность связаны таким соотношением, получило название вакуумноподобного. Особенностью вакуумноподобного состояния является то, что оно не меняется при расширении — плотность и давление его остаются постоянными.

Следующее важное обстоятельство связано с уточнением Эйнштейном закона всемирного тяготения Ньютона. Согласно Эйнштейну, в создании гравитационных ускорений участвует не только плотность массы ρ, но и давление Р (или натяжение). Вместо ρв формулу для вычисления тяготения входит сумма (ρ + 3P/c2).

В обычных астрофизических условиях, например в звездах, второе слагаемое чрезвычайно мало. Но в случае вакуумноподобного состояния оно становится решающим. Подставляя в скобки P* = —ρ* с2 для этого случая, убеждаемся, что сумма в скобках становится отрицательной и гравитационное притяжение сменяется отталкиванием. Вот это отталкивание, имеющее не гидродинамический (как в случае перепада давлений), а чисто гравитационный характер, вероятно, и послужило тем «первотолчком», который привел к расширению Вселенной.

Любые две частицы в такой очень ранней Вселенной двигались с нарастающей скоростью друг от друга. При этом плотность вакуумноподобного состояния ρ*, как уже говорилось, с расширением не уменьшалась, не уменьшалось и натяжение (отрицательное давление) Р* и ускоряющая сила действовала постоянно[4]. Легко показать, что при этом расстояния между частицами увеличиваются по экспоненциальному закону, т. е. чрезвычайно стремительно: R = R0 ∙ ехр(3∙1043∙t(с)). Этот процесс получил название инфляции (на английском — раздувание). Он, вероятно, продолжался с t ≈ 3∙10-44 с, когда плотность массы и частиц и вакуумноподобного состояния была около планковского значения ρп ≈ 1094 г/см3, до t ≈ 3∙10-35 с. К концу этого периода все частицы разлетелись на невообразимо большие расстояния — порядка 104∙100000000 парсеков друг от друга. Для сравнения напомним, что размер всей видимой сегодня Вселенной «всего» примерно 1010 парсеков! В той ранней Вселенной практически не было частиц, настолько они были редки, и температура практически не отличалась от -абсолютного нуля. Единственное, что осталось во Вселенной к концу раздувания, — это вакуумноподобное состояние. Но такое состояние неустойчиво и при t примерно равном 3∙10-35 с оно распалось на обычные частицы, движущиеся с ультрарелятивистскими скоростями. Температура во Вселенной в ходе распада вакуумноподобного состояния подскочила примерно до T ≈ 1027 К. Вселенная стала горячей! Это был конец инфляции — вакуумноподобное состояние исчезло. Дальнейшее расширение Вселенной протекало с замедлением, вследствие взаимного тяготения частиц обычного вещества. Последующая судьба расширяющегося горячего вещества описана в предыдущем разделе.

(adsbygoogle = window.adsbygoogle || []).push({});
1 ... 54 55 56 57 58 59 60 61 62 ... 66
Перейти на страницу:
На этой странице вы можете бесплатно скачать Человек, открывший взрыв Вселенной. Жизнь и труд Эдвина Хаббла - Александр Шаров торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉