Категории
Самые читаемые книги
ЧитаемОнлайн » Справочная литература » Энциклопедии » Большая Советская энциклопедия (ГА) - БСЭ БСЭ

Большая Советская энциклопедия (ГА) - БСЭ БСЭ

Читать онлайн Большая Советская энциклопедия (ГА) - БСЭ БСЭ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 53 54 55 56 57 58 59 60 61 ... 175
Перейти на страницу:

  Внутреннее строение молекул Г. слабо влияет на их термические свойства (давление, температуру, плотность и связь между ними). Для этих свойств в первом приближении существенна только молекулярная масса Г. Напротив, калорические свойства Г. (теплоёмкость, энтропия и др.), а также его электрические и магнитные свойства существенно зависят от внутреннего строения молекул. Например, для расчёта (в первом приближении) теплоёмкости Г. при постоянном объёме cv необходимо знать число внутренних степеней свободы молекулы (т. е. число возможных внутренних движений) iвн . В соответствии с равнораспределения законом классической статистической физики на каждую степень свободы молекулы Г. (поступательную, колебательную, вращательную) приходится энергия, равная 1 /2 · kT . Отсюда теплоёмкость 1 моля

 

  Для точного расчёта калорических свойств Г. необходимо знать уровни энергии молекулы, сведения о которых в большинстве случаев получают из анализа спектров Г. Для большого числа веществ в состоянии идеального Г. калорические свойства вычислены с высокой точностью и их значения представлены в виде таблиц до температур 10—22 тыс. градусов.

  Электрические свойства Г. связаны в первую очередь с возможностью ионизации молекул или атомов, т. е. с появлением в Г. электрически заряженных частиц (ионов и электронов). При отсутствии заряженных частиц Г. являются хорошими диэлектриками. С ростом концентрации зарядов электропроводность Г. увеличивается. Зависимость электропроводности Г. от различных физических факторов рассмотрена в ст. Электрический разряд в газах .

  При температурах начиная с нескольких тыс. градусов всякий Г. частично ионизуется и превращается в плазму . Если концентрация зарядов в плазме невелика, то свойства её мало отличаются от свойств обычного Г.

  По магнитным свойствам Г. делятся на диамагнитные (к ним относятся, например, инертные газы, H2 , N2 , CO2 , H2 O) и парамагнитные (например, O2 ). Диамагнитны те Г., молекулы которых не имеют постоянного магнитного момента и приобретают его лишь под влиянием внешнего поля (см. Диамагнетизм ). Те же Г., у которых молекулы обладают постоянным магнитным моментом, во внешнем магнитном поле ведут себя как парамагнетики (см. Парамагнетизм ). Учёт межмолекулярного взаимодействия и внутреннего строения молекул необходим при решении многих проблем физики Г., например при исследовании влияния верхних разреженных слоев атмосферы на движение ракет и спутников (см. Газовая динамика , Аэродинамика разреженных газов ).

  В современной физике Г. называют не только одно из агрегатных состояний вещества. К Г. с особыми свойствами относят, например, совокупность свободных электронов в металле (электронный Г.), фононов в жидком гелии (фононный Г.) и т. д. Г. элементарных частиц и квазичастиц обладающих целым спином , т. н. бозонов (например, фотонов, p-мезонов, фононов), называется бозе-газом. Его свойства рассматривает квантовая статистика Бозе — Эйнштейна. Свойства частиц Г. с полуцелым спином — фермионов (например, электронов, нейтронов, нейтрино, дырок проводимости и др.) рассматривает квантовая статистика Ферми — Дирака (см. Статистическая физика ).

Физические свойства газов

  Лит.: Кириллин В. А., Сычев В. В. и Шейндлин А. Е., Техническая термодинамика, М., 1969; Кикоин И. К. и Кикоин А. К., Молекулярная физика, М., 1963; Гиршфельдер Дж., Кертисс Ч., Берд Р., Молекулярная теория газов и жидкостей, пер. с англ., М., 1961; Термодинамические свойства индивидуальных веществ. Справочник, под ред. В. П. Глушко, 2 изд., т. 1—2, М., 1962.

  Э. Э. Шпильрейн.

Рис. 1. р, Т-диаграмма состояния вещества. Область газообразного состояния заштрихована. Со стороны низких температур и давлений она ограничена кривыми сублимации (I) и парообразования (II). Тр — тройная точка, К — критическая точка. Штриховой линией показана критическая изохора вещества.

Рис. 2. Распределение Максвела для молекул азота при температурах 20 и 500°С. По оси ординат отложена доля молекул (в %), обладающих скоростями между с и (с + 10) м/сек ; сн — наиболее вероятная скорость, которой обладает наибольшее число молекул при данной температуре;  — средняя арифметическая скорость молекул;  — средняя квадратичная скорость.

Газы в металлах

Га'зы в металлах. Г. попадают в твердые и жидкие металлы при их выплавке и электролитическом получении, при взаимодействии металлических изделий с атмосферой. Например, при производстве стали из чугуна в мартеновских печах или в конверторах в расплавленный металл из печной атмосферы попадают кислород и азот; при получении никеля электролизом его водных растворов твёрдый металл насыщается водородом, выделяющимся на катоде. Различают 3 вида взаимодействия межу Г. и металлами: адсорбцию , растворение и образование химических соединений.

  При адсорбции Г. взаимодействуют только с поверхностью металла и образуют на ней плёнки толщиной, равной диаметру одной или несколько молекул. Адсорбция уменьшается при повышении температуры и понижении давления Г. над металлом. Г., адсорбированные на металлических частях электровакуумных приборов (применяемых в измерительной аппаратуре), радиопередающих устройств, преобразователей электрической энергии, в процессе эксплуатации десорбируются и нарушают устойчивую работу аппаратуры (например, изменяют электропроводность). Удаление адсорбированных Г. при изготовлении такой аппаратуры достигается глубокой откачкой, применением поглотителей Г. (геттеров ) и является одной из важнейших задач вакуумной техники.

  Большинство Г., кроме инертных, образует с твёрдыми и жидкими металлами истинные растворы. Г., молекулы которых состоят из нескольких атомов (например, сернистый газ, углекислый газ, водород, азот), при растворении в металлах распадаются на атомы. Это облегчает внедрение Г. в металл, т. к. уменьшает энергию, необходимую для того, чтобы раздвинуть сильно взаимодействующие друг с другом атомы металла. Кроме того, часть затрачиваемой энергии компенсируется её выигрышем при химическом взаимодействии атомов Г. и металла. Поэтому растворение многоатомных газов сопровождается их диссоциацией . Например, двухатомные газы водород и азот растворяются в железе по реакциям

  H2 = 2Нв железе ;   N2 „ = 2Nв железе .

  Растворимость Г. в расплавленных металлах значительно выше, чем в твёрдых. Это часто приводит к ухудшению качества металлических слитков из-за образования в них газовых пузырей, внутренних раковин и пористости. Такие дефекты возникают вследствие того, что при постепенном затвердевании слитка (кристаллизации) в изложнице концентрация Г. в остающейся жидкости настолько повышается, что Г. выделяются в ее объеме, а образующиеся при этом пузыри не успевают всплыть и удалиться до полного затвердевания слитка.

  Г. часто образуют с металлами химические соединения: окислы, сульфиды, нитриды. Эти соединения нерастворимы в металлах и выделяются в виде самостоятельных фаз — т. н. неметаллических включений, присутствие которых сильно ухудшает механические и антикоррозионные свойства металлов и сплавов. Поэтому в промышленности применяются различные способы удаления Г. из металлов. Один из наиболее эффективных — использование вакуумирования. При этом благодаря понижению давления Г. происходит их выделение из металлов, протекающее особенно интенсивно, когда металл находится в расплавленном состоянии.

  Широко распространены выплавка металлов и сплавов, особенно стали, в вакуумных печах, вакуумирование жидкого металла при разливке и в ковшах (см. Вакуумная плавка , Дегазация стали ). С такой же целью применяют продувку жидкого металла инертными газами (например, аргоном). В ряде случаев осуществляют плавку или нагрев металла в защитной газовой атмосфере, не содержащей компонентов, вредных для металла.

  Лит.: Смителлс К., Газы и металлы, пер. с англ., М. — Л., 1940; Вакуумная металлургия, М., 1962; Жуховицкий А. А., Шварцман Л. А., Физическая химия, М., 1963; Дэшман С., Научные основы вакуумной техники, пер. с англ., М., 1964.

  Л. А. Шварцман, Л. В. Ванюкова.

Газы в технике

Га'зы в технике, применяются главным образом в качестве топлива; сырья для химической промышленности: химических агентов при сварке, газовой химико-термической обработке металлов, создании инертной или специальной атмосферы, в некоторых биохимических процессах и др.; теплоносителей; рабочего тела для выполнения механической работы (огнестрельное оружие, реактивные двигатели и снаряды, газовые турбины, парогазовые установки, пневмотранспорт и др.): физической среды для газового разряда (в газоразрядных трубках и др. приборах). В технике используется свыше 30 различных Г.

1 ... 53 54 55 56 57 58 59 60 61 ... 175
Перейти на страницу:
На этой странице вы можете бесплатно скачать Большая Советская энциклопедия (ГА) - БСЭ БСЭ торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Аннушка
Аннушка 16.01.2025 - 09:24
Следите за своим здоровьем  книга супер сайт хороший
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...