Категории
Самые читаемые книги
ЧитаемОнлайн » Научные и научно-популярные книги » Математика » φ – Число Бога. Золотое сечение – формула мироздания - Марио Ливио

φ – Число Бога. Золотое сечение – формула мироздания - Марио Ливио

Читать онлайн φ – Число Бога. Золотое сечение – формула мироздания - Марио Ливио

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 52 53 54 55 56 57 58 59 60 ... 64
Перейти на страницу:

Мы вполне могли бы заменить в этом отрывке слово «Искусство» словом «Математика» – и получить утверждение, отражающее реальность, которой отчаянно сопротивляются многие выдающиеся умы. Дело в том, что слишком уж эффективна математика на первый взгляд. По словам Эйнштейна, «Как так получается, что математика, продукт человеческой мысли, независимой от опыта, так прекрасно соответствует объектам физической реальности?» Другой выдающийся физик Юджин Вигнер (1902–1995), известный своим огромным вкладом в ядерную физику, в 1960 году прочитал знаменитую лекцию под названием «Непостижимое могущество математики в естественных науках». Например, нам стоит задаться вопросом, почему же так вышло, что планеты, как выяснилось, вращаются вокруг Солнца по кривой (эллипсу), которую изучили греческие геометры задолго до открытия законов Кеплера, и почему объяснение существования квазикристаллов опирается на золотое сечение, то есть на концепцию, которую Евклид придумал для чисто математических целей. И разве не поразительно, что структуры многих галактик, состоящих из миллиардов звезд, достаточно точно повторяют любимую кривую Бернулли – величественную логарифмическую спираль? И самое поразительное: как так получается, что законы физики вообще можно выразить математическими уравнениями?

Но это далеко не все. Например, математик Джон Форбс Нэш, прославившийся на весь мир как герой книги и биографического фильма «Игры разума», в 1994 году получил Нобелевскую премию по экономике за диссертацию по математике, которую написал в 21 (!) год. В этой диссертации Нэш рассказал о «Равновесии Нэша», которое описывает стратегические некооперативные игры, которые вызвали революцию в самых разных сферах – от экономики и эволюционной биологии до политологии. Почему же математика так замечательно оправдывает себя на практике?

Признание необычайной «эффективности» математики проникло даже в гомерически смешной отрывок из романа Сэмюэля Беккета «Моллой», с которым лично у меня связана забавная история. Дело было в 1980 году, и мы с двумя коллегами из Флоридского университета писали статью о нейтронных звездах – это необычайно компактные и плотные космические объекты, возникающие в результате гравитационного коллапса ядер массивных звезд. Статья была в большей степени математическая, чем принято в высшем обществе астрономических статей, и поэтому мы решили снабдить первую страницу соответствующим эпиграфом. Эпиграф гласил:

Удивительно, насколько математика способствует…

Сэмюэль Беккет. «Моллой» (Здесь и далее пер. М. Кореневой)

Мы снабдили эту строчку ссылкой на первый роман из трилогии «Моллой», «Мэлоун умирает» и «Неназываемый» прославленного писателя и драматурга Сэмюэля Беккета (1906–1989). Кстати, во всех трех романах речь идет о поисках себя – о том, как писатели пишут в погоне за собственной самостью. Нас подталкивают к наблюдению за характерами в разной степени разложения, которые заняты поисками смысла существования.

Эпиграфы у статей по астрофизике бывают очень редко. Так что мы получили письмо от редактора «The Astrophysical Journal», где он сообщал, что хотя и сам любит и ценит Беккета, однако не видит особой необходимости включать в статью эпиграф. Мы ответили, что предоставляем ему решать, печатать эпиграф или нет, и в результате статья вышла с эпиграфом – это было в выпуске от 15 декабря 1980 года. А вот как выглядит отрывок из «Моллоя» в неурезанном виде:

Зимой я ходил укутанный под пальто газетами, сбрасывая их вместе с пробуждением земли, окончательным, в апреле. Лучше всего подходило для этого литературное приложение к «Таймсу», благодаря своей неслабеющей прочности и герметичности. Даже газы мои не причиняли ему вреда. С газами я бороться не могу, они вырываются из моего зада по малейшему поводу и без повода, придется, время от времени, об этом говорить, несмотря на все мое отвращение к ним. Однажды я взялся их считать. Триста пятнадцать раз за девятнадцать часов, в среднем по шестнадцать в час. В конце концов, не так много. Четыре раза каждые четверть часа. Совсем ничего. Не выходит и по разу за четыре минуты. Просто невероятно. Черт побери, я почти не воняю, незачем было и вспоминать. Удивительно, насколько математика способствует самопознанию.

История математики знает по крайней мере две попытки – совсем разные с философской точки зрения – ответить на вопрос о поразительной мощи этой науки. Ответы эти также связаны с фундаментальным вопросом о подлинной природе математики. Всестороннее обсуждение этих тем потребовало бы нескольких томов и, конечно, далеко выходит за рамки этой книги. Поэтому я лишь кратко опишу несколько основных направлений мышления и изложу собственное мнение на этот счет.

Один взгляд на природу математики, традиционно именуемый платоническим, состоит в том, что математика вечна и всеобъемлюща и ее существование есть объективный факт, не зависящий от нас, людей. Согласно этому платоническому представлению математика была всегда, существовала в некоем абстрактном мире, а люди просто открыли ее, примерно как Микеланджело считал, что его скульптуры заключены внутри мраморных глыб и ему остается лишь убрать все лишнее. Золотое сечение, числа Фибоначчи, Евклидова геометрия и уравнения Эйнштейна – все это составные части платонической реальности, которая превосходит пределы человеческого разума. Сторонники платоновской точки зрения считают, что известный австрийский логик Курт Гёдель также был всей душой предан платонизму. Они подчеркивают, что он не просто говорил о математических понятиях, что и «они тоже могут отражать тот или иной аспект объективной реальности», но и его «теоремы о неполноте» сами по себе могут служить доводами в пользу платонического мировоззрения. Эти теоремы – вероятно, самые знаменитые результаты во всей истории логики – показывают, что для любой формальной системы аксиом (например, теории чисел) существуют утверждения, формулируемые на ее собственном языке, которые она не в состоянии ни доказать, ни опровергнуть. Иначе говоря, теория чисел, например, «неполна» в том смысле, что существуют истинные постулаты теории чисел, которые нельзя доказать методами, основанными на теории чисел. Чтобы доказать их, мы вынуждены перескочить в другую систему, богаче и выше уровнем, где опять же можно сформулировать истинные постулаты, которые нельзя доказать, не выходя из ее рамок, и так до бесконечности. Специалист по информатике и писатель Дуглас Р. Хофштадтер сухо сформулировал это в своей блистательной книге «Гёдель, Эшер, Бах. Эта бесконечная гирлянда»: «Понятие доказуемости у́же понятия истины». В этом отношении никогда не будет формального способа определить, взяв конкретное математическое утверждение, абсолютно ли оно истинно – точно так же как невозможно определить, верна ли та или иная физическая теория. Роджер Пенроуз, математик из Оксфорда, принадлежит к тем, кто уверен, что теоремы Гёделя – мощный довод в пользу существования платонического математического мира. В своей чудесной книге «Тени разума», которая подталкивает к интереснейшим размышлениям, Пенроуз говорит: «Гёдель доказал не то, что математика… – это произвольные поиски, направление которых определяется прихотью Человека; он доказал, что математика – это нечто абсолютное, и в ней мы должны не изобретать, но открывать… ни одна система “искусственных” правил не способна сделать это за нас». И добавляет: «Такая платоническая точка зрения была существенна для Гёделя» (Пер. А. Р. Логyнова и Н. А. Зубченко). Английский математик XX века Г. Г. Харди также был убежден, что функция человека – «открывать или наблюдать» математику, а не изобретать ее. Иначе говоря, абстрактный пейзаж математики существовал всегда и только и ждал, когда исследователи-математики его обнаружат.

Одна из предлагаемых разгадок этой тайны – почему математика так хорошо объясняет явления природы – опирается на интереснейшую модификацию идей Платона. Этот «модифицированный платонизм» отстаивает ту точку зрения, что законы физики выражаются математическими уравнениями, структура вселенной фрактальна, галактики самоорганизуются в логарифмические спирали и т. д. потому, что математика есть язык вселенной. А конкретнее, по-прежнему предполагается, что математические объекты существуют объективно и зависят отнюдь не от наших знаний о них, однако вместо того, чтобы выводить математику целиком и полностью в какой-то мифический абстрактный план, сторонники этой точки зрения считают, что она хотя бы отчасти находится в реальном мироздании. Если мы хотим наладить общение с разумными цивилизациями, от которых до нас 10 000 световых лет, нам нужно всего-навсего передать им число 1,6180339887… – и можно не сомневаться, что они поймут, что мы имеем в виду, поскольку Вселенная, несомненно, навязала и им точно такую же математику. Да, Бог – математик.

1 ... 52 53 54 55 56 57 58 59 60 ... 64
Перейти на страницу:
На этой странице вы можете бесплатно скачать φ – Число Бога. Золотое сечение – формула мироздания - Марио Ливио торрент бесплатно.
Комментарии
КОММЕНТАРИИ 👉
Комментарии
Аннушка
Аннушка 16.01.2025 - 09:24
Следите за своим здоровьем  книга супер сайт хороший
Татьяна
Татьяна 21.11.2024 - 19:18
Одним словом, Марк Твен!
Без носенко Сергей Михайлович
Без носенко Сергей Михайлович 25.10.2024 - 16:41
Я помню брата моего деда- Без носенко Григория Корнеевича, дядьку Фёдора т тётю Фаню. И много слышал от деда про Загранное, Танцы, Савгу...