Эволюция Вселенной и происхождение жизни - Пекка Теерикор
Шрифт:
Интервал:
Закладка:
Рис. 19.2. На диаграмме Герцгипрунга-Рассела звезды разделены на группы: звезды главной последовательности, красные гиганты и белые карлики занимают отдельные места на диаграмме. Горизонтальная ось указывает температуру поверхности (и спектральный класс), а вертикальная — светимость звезды в единицах светимости Солнца. Разгадка смысла этой диаграммы стала одним из достижений астрономии XX века.
Отметим, что в то время все это было не так уж и очевидно, и работа Эддингтона вызвала жаркие дебаты на собрании Королевского астрономического общества между самим Эддингтоном и ведущим английским астрономом-теоретиком того времени Джеймсом Джинсом (1877–1946). В итоге прав оказался Эддингтон, хотя многие детали звездной эволюции и для него остались непонятными.
Рис. 19.3. Артур Эддингтон (1882–1944).
Внутренняя структура типичной звезды главной последовательности — Солнца.Примерно 4,6 млрд лет назад Солнце родилось из газа, содержащего 73 % (по массе) водорода, 25 % гелия и небольшое количество более тяжелых элементов. Радиус Солнца сейчас составляет 694 000 км, мощность излучаемой им энергии равна 3,90 х 1026 Вт. Этот «светящийся шар», по-видимому, сохраняет свою светимость и размер на протяжении истории человечества, а судя по ископаемым остаткам — и на протяжении большей части геологической истории Земли.
Мы не можем заглянуть в недра Солнца, но царящие там условия можно вывести из того факта, что Солнце не расширяется и не сжимается. Чтобы удержать Солнце от коллапса, в его центре должна быть высокая температура и большая плотность вещества. Внутренние характеристики Солнца, вычисленные в модели газового шара, приведены в табл. 19.1. Изучив эту таблицу, мы видим, что температура и плотность очень круто падают от центра к поверхности, тогда как доля водорода остается неизменной во внешних двух третях солнечного радиуса и уменьшается только в самых глубоких слоях солнечного ядра (результат «сгорания» водорода).
У Солнца нет твердой поверхности. Его свет излучается с различных глубин слоя толщиной около 300 км, называемого фотосферой. Когда говорят о температуре Солнца, обычно называют цифру 5500 °C, но это средняя температура разных слоев фотосферы.
Самая холодная часть Солнца находится в верхней части фотосферы, температура там около 4300 °C. Над фотосферой лежит хромосфера, слой толщиной 2000 км. Там газ разрежен, а температура в верхней ее части достигает 100 000 °C. Над хромосферой простирается корона с температурой в миллионы градусов. Формирующий обширную корону газ очень разрежен. Он излучает мало видимого света, и увидеть его можно во время солнечного затмения, когда Луна закрывает фотосферу (см. рис. 19.10).
Мощность излучения Солнца 3,90 x 1026 Вт. Если бы эта энергия не возмещалась, Солнце не оставалось бы в равновесии. Теперь мы знаем, что энергия звезд главной последовательности вырабатывается в ядерных реакциях, в ходе которых ядра водорода объединяются в ядра гелия. В маломассивных звездах главной последовательности, включая Солнце, основной реакцией служит протон-протонная цепочка, а в более массивных звездах происходит цепь более сложных реакций.
Эти разные пути превращения водорода в гелий впервые обнаружил немецко-американский физик Ханс Бете (1906–2005) в своих теоретических работах конца 1930-х годов. Эти процессы кратко называют горением водорода (здесь «горение» в смысле ядерного процесса выделения энергии). Бете был одним из тех ученых с еврейскими корнями, кого вынудили покинуть родину. В 1967 году он получил Нобелевскую премию по физике за работы по ядерному синтезу в звездах.
Таблица 19.1. Современные внутренние характеристики Солнца.
Жизнь после главной последовательности.Большую часть жизни звезда проводит на главной последовательности, превращая и превращая водород в гелий. Изучая табл. 19.1 с характеристиками недр Солнца, мы видим, что солнечная фотосфера сохраняет свои исходные 73 % массы водорода. Но чтобы построить равновесную модель ядра, нужно взять только 36 % водорода и 62 % гелия. Это согласуется с теоретической картиной, в которой водород в ядре превращается в гелий на протяжении всей жизни Солнца, а в фотосфере слишком холодно для реакций термоядерного синтеза.
Достаточно спокойная жизнь звезд на главной последовательности заканчивается, когда водородное топливо истощается в горячем ядре звезды.
Массивные звезды сжигают свое топливо гораздо быстрее, чем маломассивные, несмотря на то что вначале запас топлива у них был больше. Это означает, что массивные звезды проводят на главной последовательности намного меньше времени, чем, например, Солнце, которое в этой фазе находится 10 млрд лет своей жизни. Причина в том, что запас топлива в звезде пропорционален ее массе, а скорость сгорания топлива (то есть светимость звезды) пропорциональна массе в четвертой степени. Поэтому время жизни звезды главной последовательности с массой, равной 10 массам Солнца, составляет всего 1/1000 от времени жизни Солнца. Звезды с массой в 30 масс Солнца светят ярче Солнца в 140 000 раз и остаются на главной последовательности около 5 млн лет. Маленькие звезды с массой вдвое меньше, чем у Солнца, имеют светимость всего 4 % от солнечной, зато на главной последовательности они остаются очень долго, около 30 млрд лет.
Когда запас топлива в самом центре звезды подходит к концу, ядро звезды начинает сжиматься, и температура в нем от этого повышается. Тогда звезда использует новое водородное топливо из оболочки, окружающей горячее гелиевое ядро. На внутреннем крае водородного слоя он превращается в гелий, который как пепел скапливается в центре звезды. Радиус горящего слоя постепенно растет. Вообще интенсивность энерговыделения в недрах звезды увеличивается со временем, и для того, чтобы иметь возможность излучать эту энергию с возрастающей интенсивностью, звезда раздувает свою поверхность. Ее внешние слои раздуваются настолько, что звезда превращается в красный гигант. Такая судьба ждет и наше Солнце (рис. 19.4).
Рис. 19.4. Через 5 млрд лет Солнце расширится и станет красным гигантом. В конце концов оно заполнит всю внутреннюю область Солнечной системы и проглотит Землю.
После главной последовательности температура в ядре звезды повышается. Значение максимальной температуры зависит от массы звезды. В табл. 19.2 приведен список основных ядерных реакций, генерирующих энергию при разных температурах. Первая строка соответствует стадии главной последовательности.
Для того чтобы звезда успешно прошла через все стадии ядерного синтеза, указанные в этой таблице, ее начальная масса должна быть по крайней мере в 15 раз больше, чем у Солнца. В менее массивных звездах температура никогда не поднимается достаточно высоко для синтеза кремния. Горение углерода и реакции, возможно, следующие за этим, требуют, чтобы звезда была хотя бы втрое массивнее Солнца. Звезда с массой в четверть массы Солнца или еще меньше никогда не уйдет дальше горения водорода и останется гелиевой звездой. Звезды, масса которых заключена между 1/4 и 3 массами Солнца, начинают сжигать гелий на поздней стадии своей эволюции и превращаются в углеродно-кислородные звезды. Дальше этой ядерной реакции они уже никогда не смогут продвинуться.
Таблица 19.2. Ядерные реакции, генерирующие энергию в звездах.
Маленькие зеленые человечки или белые карлики?В начале 1960-х годов уже было известно несколько «радиозвезд» (как выяснилось — квазаров, см. главу 26). Новый метод их поиска разработал Энтони Хьюиш из Кавендишской лаборатории (Кембриджский университет), используя эффект мерцания. Обычные звезды мерцают, гак как их свет идет через неспокойные слои атмосферы. Радиозвезды тоже мерцают, поскольку на пути к Земле радиоволны проходят сквозь неоднородный солнечный ветер. Хьюиш заполнил антеннами поле площадью 2 га и начал систематический обзор всего неба в поиске мерцающих радиозвезд, которые могли бы оказаться квазарами. Каждый день присоединенный к радиоприемнику самописец выдавал 30-метровую бумажную ленту с записью принятых сигналов. С этой лентой работала студентка Хьюиша — Джоселин Белл, отвечавшая за работу аппаратуры и анализ данных. Она заметила, что один из радиоисточников мерцал довольно необычно. Странность заключалась в том, что импульсы излучения приходили с постоянным интервалом в 1,3 с. Вначале Хьюиш подумал, что это искусственный источник, но вскоре стало ясно, что он расположен не на Земле, а на небе. Потом возникла еще одна захватывающая идея, что эти импульсы передают иные разумные существа с планеты, обращающейся вокруг далекой звезды.