Логика. Учебное пособие. Издание 2-е - Александр Ивин
Шрифт:
Интервал:
Закладка:
4. «Ни одно высказывание не является отрицательным», или проще: «Нет отрицательных высказываний». Однако само это выражение представляет собой высказывание и является как раз отрицательным. Явный, как будто, парадокс. С помощью какой переформулировки данного утверждения можно было бы избежать парадокса?
Средневековый философ и логик Ж.Буридан известен широкому читателю рассуждением об осле, который, стоя между двумя одинаковыми охапками сена, обязательно умрет с голоду. Осел, как и всякое животное, стремится выбрать из двух вещей лучшую. Две охапки совершенно не отличаются друг от друга, и потому он не может предпочесть ни одну из них. Однако этого «буриданова осла» в сочинениях самого Буридана нет. В логике Буридан хорошо известен, и в частности своей книгой о софизмах. В ней приводится такое умозаключение, относящееся к нашей теме: ни одно высказывание не является отрицательным; следовательно, существует отрицательное высказывание. Является ли этот вывод обоснованным?
5. Хорошо известно описание Н.В.Гоголем игры Чичикова с Ноздревым в шашки. Их партия так и не закончилась, Чичиков заметил, что Ноздрев мошенничает, и отказался играть, опасаясь проигрыша. Недавно один специалист по шашкам восстановил по репликам игравших ход этой партии и показал, что позиция Чичикова не была еще безнадежной.
Допустим, что Чичиков все-таки продолжил игру и в конце концов выиграл партию, несмотря на плутовство партнера. По уговору проигравший Ноздрев должен был отдать Чичикову пятьдесят рублей и «какого-нибудь щенка средней руки или золотую печатку к часам». Но Ноздрев скорее всего отказывался бы платить, упирая на то, что он сам всю игру мошенничал, а игра не по правилам – это как бы и не игра. Чичиков мог бы возразить, что разговор о мошенничестве здесь не к месту: мошенничал сам проигравший, значит, он тем более должен платить.
В самом деле, должен был бы платить Ноздрев в подобной ситуации или нет? С одной стороны – да, поскольку он проиграл. Но с другой – нет, так как игра не по правилам – это вовсе и не игра; ни выигравшего, ни проигравшего в такой «игре» не может быть. Если бы мошенничал сам Чичиков, Ноздрев, конечно, не обязан был бы платить. Но, однако, мошенничал как раз проигравший Ноздрев…
Здесь ощущается что-то парадоксальное: «с одной стороны…», «с другой стороны…», и притом с обеих сторон в равной мере убедительно, хотя эти стороны несовместимы.
Должен все-таки Ноздрев платить или нет?
6. «Всякое правило имеет исключения». Но ведь это утверждение само является правилом. Как и все иные правила, оно должно иметь исключения. Таким исключением будет, очевидно, правило «Есть правила, не имеющие исключений». Нет ли во всем этот парадокса? Какой из предыдущих примеров напоминают эти два правила? Допустимо ли рассуждать так: всякое правило имеет исключения; значит, существуют правила без исключений?
7. «Всякое обобщение ошибочно». Ясно, что это утверждение суммирует опыт мыслительной операции обобщения и само является обобщением. Как и все иные обобщения, оно должно быть ошибочным. А значит, должны иметься верные обобщения. Однако правильно ли рассуждать так: всякое обобщение неверно, следовательно, есть верные обобщения?
8. Некий писатель сочинил «Эпитафию всем жанрам», призванную доказать, что литературные жанры, разграничение которых вызывало столько споров, умерли и можно о них не вспоминать.
Но эпитафия, между тем, тоже жанр в некотором роде, жанр надгробных надписей, сложившийся еще в античные времена и вошедший в литературу как разновидность эпиграммы:
Здесь я покоюсь: Джимми Хогг.Авось грехи простит мне Бог,Как я бы сделал, будь я Бог,А он – покойный Джимми Хогг.
Так что эпитафия всем без изъятия жанрам грешит как будто непоследовательностью. Как лучше ее переформулировать?
9. «Никогда не говори „никогда“». Запрещая употребление слова «никогда», приходится дважды употреблять это слово!
Аналогично обстоит, как кажется, дело с советом: «Пора бы тем, кто говорит „пора“, сказать что-нибудь, кроме „пора“».
Нет ли в подобных советах своеобразной непоследовательности и можно ли ее избежать?
10. В стихотворении «Не верьте», напечатанном, естественно, в разделе «Ироническая поэзия», его автор рекомендует не верить ни во что:
…Не верьте в колдовскую власть огня:Горит, пока кладут в него дровишки.Не верьте в златогривого коняНи за какие сладкие коврижки!Не верьте в то, что звездные стадаНесутся в бесконечной круговерти.Но что же вам останется тогда?Не верьте в то, что я сказал.Не верьте.
В.ПрудовскийНо реально ли такое всеобщее неверие? Судя по всему, оно противоречиво и, значит, логически невозможно.
11. Допустим, что, вопреки общему убеждению, неинтересные люди все-таки есть. Соберем их мысленно вместе и выберем из них самого маленького по росту, или самого большего по весу, или какого-то другого «самого…». На этого человека интересно было бы посмотреть, так что мы напрасно включили его в число неинтересных. Исключив его, мы опять найдем среди оставшихся «самого…» в том же самом смысле и т.д. И все это до тех пор, пока не останется только один человек, которого не с кем будет уже сравнивать. Но, оказывается, этим он как раз и интересен! В итоге мы приходим к выводу, что неинтересных людей нет. А началось рассуждение с того, что такие люди существуют.
Можно, в частности, попробовать найти среди неинтересных людей самого неинтересного из всех неинтересных. Этим он будет, без сомнения, интересен, и его придется исключить из неинтересных людей. Среди оставшихся опять-таки найдется наименее интересный и т.д.
В этих рассуждениях определенно есть привкус парадоксальности. Допущена ли здесь какая-нибудь ошибка и если да, то какая?
12. Допустим, что вам дали чистый лист бумаги и поручили описать этот лист на нем же. Вы пишите: это лист прямоугольной формы, белый, таких-то размеров, изготовленный из прессованных волокон древесины и т.д.
Описание как будто закончено. Но оно явно неполное! В процессе описания объект изменился: на нем появился текст. Поэтому к описанию нужно еще добавить: а кроме того, на этом листе бумаги написано: это лист прямоугольной формы, белый…и т.д. до бесконечности.
Кажется, что здесь парадокс, не так ли?
Хорошо известен детский стишок:
У попа была собака,Он ее любил,Она съела кусок мяса,Он ее убил.Убил и закопал,А на плите написал:«У попа была собака…»
Смог ли этот любивший свою собаку поп когда-нибудь закончить надгробную надпись? Не напоминает ли составление этой надписи полное описание листа бумаги на нем самом?
13. Один автор дает такой «тонкий» совет: «Если маленькие хитрости не позволяют достичь желаемого, прибегните к большим хитростям». Этот совет предлагается под заголовком «Маленькие хитрости». Но относится ли он на самом деле к таким хитростям? Ведь «маленькие хитрости» не помогают, и как раз по этой причине приходится прибегнуть к данному совету.
14. Назовем игру нормальной, если она завершается в конечное число ходов. Примерами нормальных игр могут служить шахматы, шашки, домино: эти игры всегда завершаются или победой одной из сторон, или ничьей. Игра, не являющаяся нормальной, продолжается бесконечно, не приводя ни к какому результату. Введем также понятие сверхигры: первым ходом такой игры является установление того, какая именно игра должна играться. Если, к примеру, вы и я намереваемся играть в сверхигру и мне принадлежит первый ход, я могу сказать: «Давайте играть в шахматы». Тогда вы в ответ делаете первый ход шахматной игры, допустим, е2 – е4, и мы продолжаем партию до ее завершения (в частности, в связи с истечением времени, отведенного турнирным регламентом). В качестве своего первого хода я могу предложить сыграть в крестики-нолики и т.п. Но игра, которая мною выбирается, должна быть нормальной; нельзя выбирать игру, не являющуюся нормальной.
Возникает проблема: является сама сверхигра нормальной или нет? Предположим, что это – нормальная игра. Так как первым ее ходом можно выбрать любую из нормальных игр, я могу сказать: «Давайте играть в сверхигру». После этого сверхигра началась, и следующий ход в ней ваш. Вы вправе сказать: «Давайте играть в сверхигру». Я могу повторить: «Давайте играть в сверхигру» и таким образом процесс может продолжаться бесконечно. Следовательно, сверхигра не относится к нормальным играм. Но в силу того, что сверхигра не является нормальной, своим первым ходом в сверхигре я не могу предложить сверхигру; я должен выбрать нормальную игру. Но выбор нормальной игры, имеющей конец, противоречит тому доказанному факту, что сверхигра не принадлежит к нормальным.
Итак, является сверхигра нормальной игрой или нет?
Пытаясь ответить на этот вопрос, не следует, конечно, идти по легкому пути чисто словесных разграничений. Проще всего сказать, что нормальная игра – это игра, а сверхигра – всего лишь розыгрыш.