Большая Советская Энциклопедия (РА) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Кристаллические породы Луны (базальты, анортозиты) заметно обеднены радиоактивными элементами (U — 0,24×10-4, Th — 1,14×10-4), а породы Венеры характеризуются соотношениями U (2,2×10-4) и Th (6,5×10-4), близкими земным (каменные метеориты соответственно содержат U — 1,5×10-6 и Th — 4×10-6).
Английский геолог Дж. Джоли впервые (1905) обратил внимание на то, что Р. г. п. имеет важное значение как источник тепловой энергии Земли. Расчёты показали, что если бы концентрация радиоактивных элементов в объёме всей Земли была такой, как в её поверхностном слое, то суммарное количество тепла, образующегося в результате радиоактивного распада, в несколько десятков раз превышало бы потерю Землёй тепла путём излучения его в мировое пространство; из этого следовал вывод, что все радиоактивные элементы сосредоточены только в верхней зоне земной коры. Такое предположение получило частичное подтверждение в 1970-е гг. после измерения концентрации U и Th (10-6%) в образцах пород из мантии, извлечённых со дна океанов.
Норвежский учёный В. М. Гольдшмидт показал (1923—27), что содержание радиоактивных элементов в основном в верхней (гранитной) оболочке Земли связано с химическими особенностями силикатов (изоморфным вхождением U и Th в их структуру). Выплавление силикатной земной коры из мантии по принципу зонного плавления неизбежно приводит к обогащению коры U, Th и щелочными элементами.
В начальную стадию развития Земли выделение радиогенного тепла (см. Геотермика), по расчётным данным советского геофизика Е. А. Любимовой, было в 5 раз больше, чем в современную эпоху. Это было связано с большей Р. г. п. вследствие более высокого содержания радиоактивных элементов (главным образом и), а также, вероятно, полностью исчезнувших трансурановых элементов. См. также Радиоактивные минералы.
Лит.: Любимов Е. А., Термика Земли и Луны, М., 1968: Баранов В. И., Титаева Н. А., Радиогеология, М., 1973; Тугаринов А. И., Общая геохимия, М., 1973.
А. Н. Тугаринов.
Радиоактивность осадков
Радиоакти'вность оса'дков, обусловлена захватом радиоактивных аэрозолей и газов из атмосферного воздуха частицами облаков и осадков. Кроме того, сама вода осадков содержит атомы радиоактивного 3H. Различают естественные и искусственные Р. о., обусловленные вымыванием из атмосферы соответственно естественных и искусственных аэрозолей и газов. Наибольший уровень радиоактивности приходится на короткоживущие продукты распада 222Rn: 218Po (RaA), 214Pb (RaB), 214Bi (RaC), 214Po (RaC’).
Вымыванне осадками — основной механизм очищения атмосферы от радиоактивных загрязнений. Распределение выпадении радиоактивных аэрозолей из атмосферы в региональных районах обычно соответствует распределению количества выпавших осадков. Захват радиоактивных аэрозолей происходит в основном в облаке за счёт конденсационных роста капель на радиоактивных пылинках как на ядрах конденсации и диффузионного захвата пылинок каплями. Захват радиоактивных частиц падающими дождевыми каплями и снежинками происходит главным образом под действием инерционных сил и конвективной диффузии. Концентрация радиоактивных аэрозолей в осадках зависит от вида осадков. Наибольшие её величины отмечаются в туманах и мороси.
С. Г. Малахов.
Радиоактивные аэрозоли
Радиоакти'вные аэрозо'ли, естествепные или искусственные аэрозоли с радиоактивной дисперсной фазой.
Естественные Р. а. возникают в результате радиоактивного распада изотопов радона, выделяемых с поверхности почвы в атмосферу, а также при взаимодействии частиц космического излучения с ядрами атомов химических элементов, входящих в состав воздуха. Образующиеся при этом радиоактивные атомы оседают на частицах нерадиоактивной атмосферной пыли. С поверхности почвы ветром уносится в атмосферу и пыль, содержащая радиоактивные изотопы калия, урана, тория и др. Некоторое количество Р. а. попадает в атмосферу с космической пылью и метеоритами.
Искусственные Р. а., содержащие продукты деления и радиоактивные изотопы с наведённой активностью, образуются в определённом радиусе при взрыве ядерной бомбы, а также при технологических или аварийных выбросах на предприятиях атомной промышленности, на урановых шахтах и в обогатительных цехах (см. Радиоактивные отходы).
Состав Р. а. зависит от их происхождения и условий существования в атмосфере. См. ст. Радиоактивность атмосферы и лит. при ней.
Радиоактивные минералы
Радиоакти'вные минера'лы, минералы, содержащие природные радиоактивные элементы (долгоживущие изотопы радиоактивных рядов 238U, 235U и 232Th) в количествах, существенно превышающих величины их среднего содержания в земной коре (кларки). Известно около 250 Р. м., содержащих уран, торий либо оба эти элемента; радиевых минералов — достоверно не установлено. Разнообразие Р. м., принадлежащих к различным классам и группам, обусловлено нахождением урана в четырёх- и шестивалентных формах, изоморфизмом четырёхвалентного урана с Th, редкоземельными элементами (TR), Zr и Ca, а также изоморфизмом тория с TR цериевой подгруппы.
Различают Р. м., в которых уран (урановые минералы) или торий (ториевые минералы) присутствуют в виде основного компонента, и Р. м., в состав которых радиоактивные элементы входят в виде изоморфной примеси (уран- и/или торийсодержащие минералы). К р. м. не относятся минералы, содержащие механическую примесь Р. м. (минеральные смеси) или радиоактивные элементы в сорбированном виде.
Урановые минералы подразделяются на две группы. Одна объединяет минералы U4+ (всегда содержащие некоторое количество U6+), представленные окислом урана — уранинитом UO2 и его силикатом — коффинитом U (SiO4)1-x (OH)4x. Настуран (разновидность уранинита) и коффинит — главные промышленные минералы гидротермальных и экзогенных месторождений урана; уранинит, кроме того, встречается в пегматитах и альбититах. Порошковатые окислы (урановые черни) и гидроокислы урана образуют существенные скопления в зонах окисления различных урановых месторождений (см. Урановые руды). Титанаты урана (браннерит UTi2O6 и др.) известны в пегматитах, а также в некоторых гидротермальных месторождениях. Вторая группа объединяет минералы, содержащие U6+, — этогидроокислы (беккерелит 3UO3×3H2O?, кюрит 2PbO×5H2O3×5H2O), силикаты (уранофан Ca (H2O)2U2O4(SiO4)×3H2O, казолит Pb [UO2][SiO4]×H2O), фосфаты (отенит Ca [UO2]2[PO4]2×8H2O, торбернит Cu [UO2]2[PO4]2×12H2O), арсенаты (цейнерит Cu [UO2]2[HSO4]2×12H2O), ванадаты (карнотит K2[UO2][VO4]2×3H2O), молибдаты (иригинит), сульфаты (уранопилит), карбонаты (ураноталит); все они распространены в зонах окисления урановых месторождений.
Ториевые минералы — окисел (торианит ThO2) и силикат (торит ThSiO4) — менее распространены в природе. Они встречаются в качестве акцессорных минералов в гранитах, сиенитах и пегматитах; иногда образуют существенные концентрации в различных россыпях (см. Ториевые руды).
Уран- и/или торийсодержащие минералы — титанаты (давидит), титанотанталниобаты (самарскит, колумбит, пирохлор), фосфаты (монацит), силикаты (циркон) — большей частью рассеяны в изверженных и осадочных горных породах, обусловливая их естественную радиоактивность (см. Радиоактивность горных пород). Лишь небольшая часть из них (давидит, монацит) образует существенные концентрации и является источником получения урана и тория. В радийсодержащем барите предполагается изоморфное замещение бария радием.
Для многих Р. м. характерно метамиктное состояние (см. Метамиктные минералы). Включения Р. м. в зёрнах др. минералов сопровождаются ореолами радиационных нарушений (плеохроичные ореолы и др.). Специфической особенностью Р. м. является также способность к образованию авторадиограмм (см. Авторадиография). Накопление в Р. м. стабильных изотопов с постоянной скоростью позволяет использовать их для определения абсолютного возраста геологических образований (см. Геохронология).
Лит.: Гецева Р. В., Савельева К. Т., Руководство по определению урановых минералов, М., 1956; Соболева М. В., Пудевкина И. А., Минералы урана, М., 1957; Торий, его сырьевые ресурсы, химия и технология, М., 1960; Хейнрих Э. У., Минералогия и геология радиоактивного минерального сырья, пер. с англ., М., 1962; Минералы. Справочник, т. 2, в. 3, М., 1967: то же, т. 3, в. 1, М., 1972; Бурьянова Е. З., Определитель минералов урана и тория, 2 изд., М., 1972.